|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import DistilBertConfig, is_torch_available |
|
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, |
|
DistilBertForMaskedLM, |
|
DistilBertForMultipleChoice, |
|
DistilBertForQuestionAnswering, |
|
DistilBertForSequenceClassification, |
|
DistilBertForTokenClassification, |
|
DistilBertModel, |
|
) |
|
|
|
|
|
class DistilBertModelTester(object): |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_token_type_ids=False, |
|
use_labels=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.num_labels = num_labels |
|
self.num_choices = num_choices |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
|
|
def get_config(self): |
|
return DistilBertConfig( |
|
vocab_size=self.vocab_size, |
|
dim=self.hidden_size, |
|
n_layers=self.num_hidden_layers, |
|
n_heads=self.num_attention_heads, |
|
hidden_dim=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
dropout=self.hidden_dropout_prob, |
|
attention_dropout=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
def create_and_check_distilbert_model( |
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = DistilBertModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, input_mask) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
def create_and_check_distilbert_for_masked_lm( |
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = DistilBertForMaskedLM(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_distilbert_for_question_answering( |
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = DistilBertForQuestionAnswering(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model( |
|
input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels |
|
) |
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) |
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) |
|
|
|
def create_and_check_distilbert_for_sequence_classification( |
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_labels = self.num_labels |
|
model = DistilBertForSequenceClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def create_and_check_distilbert_for_token_classification( |
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_labels = self.num_labels |
|
model = DistilBertForTokenClassification(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
|
def create_and_check_distilbert_for_multiple_choice( |
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_choices = self.num_choices |
|
model = DistilBertForMultipleChoice(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() |
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() |
|
result = model( |
|
multiple_choice_inputs_ids, |
|
attention_mask=multiple_choice_input_mask, |
|
labels=choice_labels, |
|
) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class DistilBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
DistilBertModel, |
|
DistilBertForMaskedLM, |
|
DistilBertForMultipleChoice, |
|
DistilBertForQuestionAnswering, |
|
DistilBertForSequenceClassification, |
|
DistilBertForTokenClassification, |
|
) |
|
if is_torch_available() |
|
else None |
|
) |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": DistilBertModel, |
|
"fill-mask": DistilBertForMaskedLM, |
|
"question-answering": DistilBertForQuestionAnswering, |
|
"text-classification": DistilBertForSequenceClassification, |
|
"token-classification": DistilBertForTokenClassification, |
|
"zero-shot": DistilBertForSequenceClassification, |
|
} |
|
if is_torch_available() |
|
else {} |
|
) |
|
fx_compatible = True |
|
test_pruning = True |
|
test_resize_embeddings = True |
|
test_resize_position_embeddings = True |
|
|
|
def setUp(self): |
|
self.model_tester = DistilBertModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_distilbert_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_distilbert_model(*config_and_inputs) |
|
|
|
def test_for_masked_lm(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs) |
|
|
|
def test_for_question_answering(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs) |
|
|
|
def test_for_sequence_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs) |
|
|
|
def test_for_token_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs) |
|
|
|
def test_for_multiple_choice(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = DistilBertModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
@slow |
|
@require_torch_gpu |
|
def test_torchscript_device_change(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
for model_class in self.all_model_classes: |
|
|
|
if model_class == DistilBertForMultipleChoice: |
|
return |
|
|
|
config.torchscript = True |
|
model = model_class(config=config) |
|
|
|
inputs_dict = self._prepare_for_class(inputs_dict, model_class) |
|
traced_model = torch.jit.trace( |
|
model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) |
|
) |
|
|
|
with tempfile.TemporaryDirectory() as tmp: |
|
torch.jit.save(traced_model, os.path.join(tmp, "traced_model.pt")) |
|
loaded = torch.jit.load(os.path.join(tmp, "traced_model.pt"), map_location=torch_device) |
|
loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) |
|
|
|
|
|
@require_torch |
|
class DistilBertModelIntergrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference_no_head_absolute_embedding(self): |
|
model = DistilBertModel.from_pretrained("distilbert-base-uncased") |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) |
|
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) |
|
with torch.no_grad(): |
|
output = model(input_ids, attention_mask=attention_mask)[0] |
|
expected_shape = torch.Size((1, 11, 768)) |
|
self.assertEqual(output.shape, expected_shape) |
|
expected_slice = torch.tensor( |
|
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] |
|
) |
|
|
|
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) |
|
|