|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch DETR model. """ |
|
|
|
|
|
import inspect |
|
import math |
|
import unittest |
|
|
|
from transformers import DetrConfig, is_timm_available, is_vision_available |
|
from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device |
|
from transformers.utils import cached_property |
|
|
|
from ...generation.test_utils import GenerationTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_timm_available(): |
|
import torch |
|
|
|
from transformers import DetrForObjectDetection, DetrForSegmentation, DetrModel, ResNetConfig |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import DetrFeatureExtractor |
|
|
|
|
|
class DetrModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=8, |
|
is_training=True, |
|
use_labels=True, |
|
hidden_size=256, |
|
num_hidden_layers=2, |
|
num_attention_heads=8, |
|
intermediate_size=4, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
num_queries=12, |
|
num_channels=3, |
|
min_size=200, |
|
max_size=200, |
|
n_targets=8, |
|
num_labels=91, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.num_queries = num_queries |
|
self.num_channels = num_channels |
|
self.min_size = min_size |
|
self.max_size = max_size |
|
self.n_targets = n_targets |
|
self.num_labels = num_labels |
|
|
|
|
|
self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32) |
|
self.decoder_seq_length = self.num_queries |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]) |
|
|
|
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) |
|
|
|
labels = None |
|
if self.use_labels: |
|
|
|
labels = [] |
|
for i in range(self.batch_size): |
|
target = {} |
|
target["class_labels"] = torch.randint( |
|
high=self.num_labels, size=(self.n_targets,), device=torch_device |
|
) |
|
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) |
|
target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device) |
|
labels.append(target) |
|
|
|
config = self.get_config() |
|
return config, pixel_values, pixel_mask, labels |
|
|
|
def get_config(self): |
|
return DetrConfig( |
|
d_model=self.hidden_size, |
|
encoder_layers=self.num_hidden_layers, |
|
decoder_layers=self.num_hidden_layers, |
|
encoder_attention_heads=self.num_attention_heads, |
|
decoder_attention_heads=self.num_attention_heads, |
|
encoder_ffn_dim=self.intermediate_size, |
|
decoder_ffn_dim=self.intermediate_size, |
|
dropout=self.hidden_dropout_prob, |
|
attention_dropout=self.attention_probs_dropout_prob, |
|
num_queries=self.num_queries, |
|
num_labels=self.num_labels, |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() |
|
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} |
|
return config, inputs_dict |
|
|
|
def create_and_check_detr_model(self, config, pixel_values, pixel_mask, labels): |
|
model = DetrModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) |
|
result = model(pixel_values) |
|
|
|
self.parent.assertEqual( |
|
result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size) |
|
) |
|
|
|
def create_and_check_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): |
|
model = DetrForObjectDetection(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) |
|
result = model(pixel_values) |
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) |
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) |
|
|
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) |
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) |
|
|
|
def create_and_check_no_timm_backbone(self, config, pixel_values, pixel_mask, labels): |
|
config.use_timm_backbone = False |
|
config.backbone_config = ResNetConfig() |
|
model = DetrForObjectDetection(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) |
|
result = model(pixel_values) |
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) |
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) |
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) |
|
|
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) |
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) |
|
|
|
|
|
@require_timm |
|
class DetrModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
DetrModel, |
|
DetrForObjectDetection, |
|
DetrForSegmentation, |
|
) |
|
if is_timm_available() |
|
else () |
|
) |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": DetrModel, |
|
"image-segmentation": DetrForSegmentation, |
|
"object-detection": DetrForObjectDetection, |
|
} |
|
if is_timm_available() |
|
else {} |
|
) |
|
is_encoder_decoder = True |
|
test_torchscript = False |
|
test_pruning = False |
|
test_head_masking = False |
|
test_missing_keys = False |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) |
|
|
|
if return_labels: |
|
if model_class.__name__ in ["DetrForObjectDetection", "DetrForSegmentation"]: |
|
labels = [] |
|
for i in range(self.model_tester.batch_size): |
|
target = {} |
|
target["class_labels"] = torch.ones( |
|
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long |
|
) |
|
target["boxes"] = torch.ones( |
|
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float |
|
) |
|
target["masks"] = torch.ones( |
|
self.model_tester.n_targets, |
|
self.model_tester.min_size, |
|
self.model_tester.max_size, |
|
device=torch_device, |
|
dtype=torch.float, |
|
) |
|
labels.append(target) |
|
inputs_dict["labels"] = labels |
|
|
|
return inputs_dict |
|
|
|
def setUp(self): |
|
self.model_tester = DetrModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=DetrConfig, has_text_modality=False) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_detr_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_detr_model(*config_and_inputs) |
|
|
|
def test_detr_object_detection_head_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_detr_object_detection_head_model(*config_and_inputs) |
|
|
|
def test_detr_no_timm_backbone(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_no_timm_backbone(*config_and_inputs) |
|
|
|
|
|
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") |
|
def test_multi_gpu_data_parallel_forward(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETR does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETR does not have a get_input_embeddings method") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETR is not a generative model") |
|
def test_generate_without_input_ids(self): |
|
pass |
|
|
|
@unittest.skip(reason="DETR does not use token embeddings") |
|
def test_resize_tokens_embeddings(self): |
|
pass |
|
|
|
@slow |
|
def test_model_outputs_equivalence(self): |
|
|
|
pass |
|
|
|
def test_attention_outputs(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
decoder_seq_length = self.model_tester.decoder_seq_length |
|
encoder_seq_length = self.model_tester.encoder_seq_length |
|
decoder_key_length = self.model_tester.decoder_seq_length |
|
encoder_key_length = self.model_tester.encoder_seq_length |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = False |
|
config.return_dict = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
|
|
del inputs_dict["output_attentions"] |
|
config.output_attentions = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) |
|
|
|
self.assertListEqual( |
|
list(attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
out_len = len(outputs) |
|
|
|
if self.is_encoder_decoder: |
|
correct_outlen = 5 |
|
|
|
|
|
if "labels" in inputs_dict: |
|
correct_outlen += 1 |
|
|
|
if model_class.__name__ == "DetrForObjectDetection": |
|
correct_outlen += 2 |
|
|
|
if model_class.__name__ == "DetrForSegmentation": |
|
correct_outlen += 3 |
|
if "past_key_values" in outputs: |
|
correct_outlen += 1 |
|
|
|
self.assertEqual(out_len, correct_outlen) |
|
|
|
|
|
decoder_attentions = outputs.decoder_attentions |
|
self.assertIsInstance(decoder_attentions, (list, tuple)) |
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(decoder_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], |
|
) |
|
|
|
|
|
cross_attentions = outputs.cross_attentions |
|
self.assertIsInstance(cross_attentions, (list, tuple)) |
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(cross_attentions[0].shape[-3:]), |
|
[ |
|
self.model_tester.num_attention_heads, |
|
decoder_seq_length, |
|
encoder_key_length, |
|
], |
|
) |
|
|
|
|
|
inputs_dict["output_attentions"] = True |
|
inputs_dict["output_hidden_states"] = True |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"): |
|
added_hidden_states = self.model_tester.num_hidden_states_types |
|
elif self.is_encoder_decoder: |
|
added_hidden_states = 2 |
|
else: |
|
added_hidden_states = 1 |
|
self.assertEqual(out_len + added_hidden_states, len(outputs)) |
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions |
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) |
|
self.assertListEqual( |
|
list(self_attentions[0].shape[-3:]), |
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], |
|
) |
|
|
|
def test_retain_grad_hidden_states_attentions(self): |
|
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.output_hidden_states = True |
|
config.output_attentions = True |
|
|
|
|
|
model_class = self.all_model_classes[0] |
|
model = model_class(config) |
|
model.to(torch_device) |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class) |
|
|
|
outputs = model(**inputs) |
|
|
|
output = outputs[0] |
|
|
|
encoder_hidden_states = outputs.encoder_hidden_states[0] |
|
encoder_attentions = outputs.encoder_attentions[0] |
|
encoder_hidden_states.retain_grad() |
|
encoder_attentions.retain_grad() |
|
|
|
decoder_attentions = outputs.decoder_attentions[0] |
|
decoder_attentions.retain_grad() |
|
|
|
cross_attentions = outputs.cross_attentions[0] |
|
cross_attentions.retain_grad() |
|
|
|
output.flatten()[0].backward(retain_graph=True) |
|
|
|
self.assertIsNotNone(encoder_hidden_states.grad) |
|
self.assertIsNotNone(encoder_attentions.grad) |
|
self.assertIsNotNone(decoder_attentions.grad) |
|
self.assertIsNotNone(cross_attentions.grad) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = ["pixel_values", "pixel_mask"] |
|
expected_arg_names.extend( |
|
["head_mask", "decoder_head_mask", "encoder_outputs"] |
|
if "head_mask" and "decoder_head_mask" in arg_names |
|
else [] |
|
) |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
else: |
|
expected_arg_names = ["pixel_values", "pixel_mask"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_different_timm_backbone(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
config.backbone = "tf_mobilenetv3_small_075" |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
if model_class.__name__ == "DetrForObjectDetection": |
|
expected_shape = ( |
|
self.model_tester.batch_size, |
|
self.model_tester.num_queries, |
|
self.model_tester.num_labels + 1, |
|
) |
|
self.assertEqual(outputs.logits.shape, expected_shape) |
|
|
|
self.assertTrue(outputs) |
|
|
|
def test_greyscale_images(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
inputs_dict["pixel_values"] = floats_tensor( |
|
[self.model_tester.batch_size, 1, self.model_tester.min_size, self.model_tester.max_size] |
|
) |
|
|
|
|
|
config.num_channels = 1 |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
self.assertTrue(outputs) |
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.init_xavier_std = 1e9 |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
if "bbox_attention" in name and "bias" not in name: |
|
self.assertLess( |
|
100000, |
|
abs(param.data.max().item()), |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
else: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
|
|
TOLERANCE = 1e-4 |
|
|
|
|
|
|
|
def prepare_img(): |
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
return image |
|
|
|
|
|
@require_timm |
|
@require_vision |
|
@slow |
|
class DetrModelIntegrationTestsTimmBackbone(unittest.TestCase): |
|
@cached_property |
|
def default_feature_extractor(self): |
|
return DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50") if is_vision_available() else None |
|
|
|
def test_inference_no_head(self): |
|
model = DetrModel.from_pretrained("facebook/detr-resnet-50").to(torch_device) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**encoding) |
|
|
|
expected_shape = torch.Size((1, 100, 256)) |
|
assert outputs.last_hidden_state.shape == expected_shape |
|
expected_slice = torch.tensor( |
|
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) |
|
|
|
def test_inference_object_detection_head(self): |
|
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(torch_device) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
pixel_values = encoding["pixel_values"].to(torch_device) |
|
pixel_mask = encoding["pixel_mask"].to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(pixel_values, pixel_mask) |
|
|
|
|
|
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1)) |
|
self.assertEqual(outputs.logits.shape, expected_shape_logits) |
|
expected_slice_logits = torch.tensor( |
|
[[-19.1194, -0.0893, -11.0154], [-17.3640, -1.8035, -14.0219], [-20.0461, -0.5837, -11.1060]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) |
|
|
|
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) |
|
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) |
|
expected_slice_boxes = torch.tensor( |
|
[[0.4433, 0.5302, 0.8853], [0.5494, 0.2517, 0.0529], [0.4998, 0.5360, 0.9956]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) |
|
|
|
|
|
results = feature_extractor.post_process_object_detection( |
|
outputs, threshold=0.3, target_sizes=[image.size[::-1]] |
|
)[0] |
|
expected_scores = torch.tensor([0.9982, 0.9960, 0.9955, 0.9988, 0.9987]).to(torch_device) |
|
expected_labels = [75, 75, 63, 17, 17] |
|
expected_slice_boxes = torch.tensor([40.1633, 70.8115, 175.5471, 117.9841]).to(torch_device) |
|
|
|
self.assertEqual(len(results["scores"]), 5) |
|
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) |
|
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) |
|
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) |
|
|
|
def test_inference_panoptic_segmentation_head(self): |
|
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic").to(torch_device) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
pixel_values = encoding["pixel_values"].to(torch_device) |
|
pixel_mask = encoding["pixel_mask"].to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(pixel_values, pixel_mask) |
|
|
|
|
|
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1)) |
|
self.assertEqual(outputs.logits.shape, expected_shape_logits) |
|
expected_slice_logits = torch.tensor( |
|
[[-18.1565, -1.7568, -13.5029], [-16.8888, -1.4138, -14.1028], [-17.5709, -2.5080, -11.8654]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) |
|
|
|
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) |
|
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) |
|
expected_slice_boxes = torch.tensor( |
|
[[0.5344, 0.1789, 0.9285], [0.4420, 0.0572, 0.0875], [0.6630, 0.6887, 0.1017]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) |
|
|
|
expected_shape_masks = torch.Size((1, model.config.num_queries, 200, 267)) |
|
self.assertEqual(outputs.pred_masks.shape, expected_shape_masks) |
|
expected_slice_masks = torch.tensor( |
|
[[-7.7558, -10.8788, -11.9797], [-11.8881, -16.4329, -17.7451], [-14.7316, -19.7383, -20.3004]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.pred_masks[0, 0, :3, :3], expected_slice_masks, atol=1e-3)) |
|
|
|
|
|
results = feature_extractor.post_process_panoptic_segmentation( |
|
outputs, threshold=0.3, target_sizes=[image.size[::-1]] |
|
)[0] |
|
|
|
expected_shape = torch.Size([480, 640]) |
|
expected_slice_segmentation = torch.tensor([[4, 4, 4], [4, 4, 4], [4, 4, 4]], dtype=torch.int32).to( |
|
torch_device |
|
) |
|
expected_number_of_segments = 5 |
|
expected_first_segment = {"id": 1, "label_id": 17, "was_fused": False, "score": 0.994096} |
|
|
|
number_of_unique_segments = len(torch.unique(results["segmentation"])) |
|
self.assertTrue( |
|
number_of_unique_segments, expected_number_of_segments + 1 |
|
) |
|
self.assertTrue(results["segmentation"].shape, expected_shape) |
|
self.assertTrue(torch.allclose(results["segmentation"][:3, :3], expected_slice_segmentation, atol=1e-4)) |
|
self.assertTrue(len(results["segments_info"]), expected_number_of_segments) |
|
self.assertDictEqual(results["segments_info"][0], expected_first_segment) |
|
|
|
|
|
@require_vision |
|
@require_torch |
|
@slow |
|
class DetrModelIntegrationTests(unittest.TestCase): |
|
@cached_property |
|
def default_feature_extractor(self): |
|
return ( |
|
DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") |
|
if is_vision_available() |
|
else None |
|
) |
|
|
|
def test_inference_no_head(self): |
|
model = DetrModel.from_pretrained("facebook/detr-resnet-50", revision="no_timm").to(torch_device) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**encoding) |
|
|
|
expected_shape = torch.Size((1, 100, 256)) |
|
assert outputs.last_hidden_state.shape == expected_shape |
|
expected_slice = torch.tensor( |
|
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]] |
|
).to(torch_device) |
|
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) |
|
|