|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import unittest |
|
|
|
from transformers import DebertaTokenizer, DebertaTokenizerFast |
|
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES |
|
from transformers.testing_utils import slow |
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin |
|
|
|
|
|
class DebertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): |
|
tokenizer_class = DebertaTokenizer |
|
test_rust_tokenizer = True |
|
rust_tokenizer_class = DebertaTokenizerFast |
|
|
|
def setUp(self): |
|
super().setUp() |
|
|
|
|
|
vocab = [ |
|
"l", |
|
"o", |
|
"w", |
|
"e", |
|
"r", |
|
"s", |
|
"t", |
|
"i", |
|
"d", |
|
"n", |
|
"\u0120", |
|
"\u0120l", |
|
"\u0120n", |
|
"\u0120lo", |
|
"\u0120low", |
|
"er", |
|
"\u0120lowest", |
|
"\u0120newer", |
|
"\u0120wider", |
|
"[UNK]", |
|
] |
|
vocab_tokens = dict(zip(vocab, range(len(vocab)))) |
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] |
|
self.special_tokens_map = {"unk_token": "[UNK]"} |
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) |
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) |
|
with open(self.vocab_file, "w", encoding="utf-8") as fp: |
|
fp.write(json.dumps(vocab_tokens) + "\n") |
|
with open(self.merges_file, "w", encoding="utf-8") as fp: |
|
fp.write("\n".join(merges)) |
|
|
|
def get_tokenizer(self, **kwargs): |
|
kwargs.update(self.special_tokens_map) |
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_input_output_texts(self, tokenizer): |
|
input_text = "lower newer" |
|
output_text = "lower newer" |
|
return input_text, output_text |
|
|
|
def test_full_tokenizer(self): |
|
tokenizer = self.get_tokenizer() |
|
text = "lower newer" |
|
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] |
|
tokens = tokenizer.tokenize(text) |
|
self.assertListEqual(tokens, bpe_tokens) |
|
|
|
input_tokens = tokens + [tokenizer.unk_token] |
|
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] |
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) |
|
|
|
def test_token_type_ids(self): |
|
tokenizer = self.get_tokenizer() |
|
tokd = tokenizer("Hello", "World") |
|
expected_token_type_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] |
|
self.assertListEqual(tokd["token_type_ids"], expected_token_type_ids) |
|
|
|
@slow |
|
def test_sequence_builders(self): |
|
tokenizer = self.tokenizer_class.from_pretrained("microsoft/deberta-base") |
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False) |
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) |
|
|
|
encoded_text_from_decode = tokenizer.encode( |
|
"sequence builders", add_special_tokens=True, add_prefix_space=False |
|
) |
|
encoded_pair_from_decode = tokenizer.encode( |
|
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False |
|
) |
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) |
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) |
|
|
|
assert encoded_sentence == encoded_text_from_decode |
|
assert encoded_pair == encoded_pair_from_decode |
|
|
|
@slow |
|
def test_tokenizer_integration(self): |
|
tokenizer_classes = [self.tokenizer_class] |
|
if self.test_rust_tokenizer: |
|
tokenizer_classes.append(self.rust_tokenizer_class) |
|
|
|
for tokenizer_class in tokenizer_classes: |
|
tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-base") |
|
|
|
sequences = [ |
|
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", |
|
"ALBERT incorporates two parameter reduction techniques", |
|
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary" |
|
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" |
|
" vocabulary embedding.", |
|
] |
|
|
|
encoding = tokenizer(sequences, padding=True) |
|
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] |
|
|
|
|
|
expected_encoding = { |
|
'input_ids': [ |
|
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] |
|
], |
|
'token_type_ids': [ |
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
], |
|
'attention_mask': [ |
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] |
|
] |
|
} |
|
|
|
|
|
expected_decoded_sequence = [ |
|
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", |
|
"ALBERT incorporates two parameter reduction techniques", |
|
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary" |
|
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" |
|
" vocabulary embedding.", |
|
] |
|
|
|
self.assertDictEqual(encoding.data, expected_encoding) |
|
|
|
for expected, decoded in zip(expected_decoded_sequence, decoded_sequences): |
|
self.assertEqual(expected, decoded) |
|
|