|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch CvT model. """ |
|
|
|
|
|
import inspect |
|
import unittest |
|
from math import floor |
|
|
|
from transformers import CvtConfig |
|
from transformers.file_utils import cached_property, is_torch_available, is_vision_available |
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import CvtForImageClassification, CvtModel |
|
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import AutoFeatureExtractor |
|
|
|
|
|
class CvtConfigTester(ConfigTester): |
|
def create_and_test_config_common_properties(self): |
|
config = self.config_class(**self.inputs_dict) |
|
self.parent.assertTrue(hasattr(config, "embed_dim")) |
|
self.parent.assertTrue(hasattr(config, "num_heads")) |
|
|
|
|
|
class CvtModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
image_size=64, |
|
num_channels=3, |
|
embed_dim=[16, 48, 96], |
|
num_heads=[1, 3, 6], |
|
depth=[1, 2, 10], |
|
patch_sizes=[7, 3, 3], |
|
patch_stride=[4, 2, 2], |
|
patch_padding=[2, 1, 1], |
|
stride_kv=[2, 2, 2], |
|
cls_token=[False, False, True], |
|
attention_drop_rate=[0.0, 0.0, 0.0], |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
is_training=True, |
|
use_labels=True, |
|
num_labels=2, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.patch_sizes = patch_sizes |
|
self.patch_stride = patch_stride |
|
self.patch_padding = patch_padding |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.num_labels = num_labels |
|
self.num_channels = num_channels |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.stride_kv = stride_kv |
|
self.depth = depth |
|
self.cls_token = cls_token |
|
self.attention_drop_rate = attention_drop_rate |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
|
|
labels = None |
|
if self.use_labels: |
|
labels = ids_tensor([self.batch_size], self.num_labels) |
|
|
|
config = self.get_config() |
|
return config, pixel_values, labels |
|
|
|
def get_config(self): |
|
return CvtConfig( |
|
image_size=self.image_size, |
|
num_labels=self.num_labels, |
|
num_channels=self.num_channels, |
|
embed_dim=self.embed_dim, |
|
num_heads=self.num_heads, |
|
patch_sizes=self.patch_sizes, |
|
patch_padding=self.patch_padding, |
|
patch_stride=self.patch_stride, |
|
stride_kv=self.stride_kv, |
|
depth=self.depth, |
|
cls_token=self.cls_token, |
|
attention_drop_rate=self.attention_drop_rate, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
def create_and_check_model(self, config, pixel_values, labels): |
|
model = CvtModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
image_size = (self.image_size, self.image_size) |
|
height, width = image_size[0], image_size[1] |
|
for i in range(len(self.depth)): |
|
height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) |
|
width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) |
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels): |
|
config.num_labels = self.num_labels |
|
model = CvtForImageClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values, labels=labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, pixel_values, labels = config_and_inputs |
|
inputs_dict = {"pixel_values": pixel_values} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
""" |
|
Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds, |
|
attention_mask and seq_length. |
|
""" |
|
|
|
all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} |
|
if is_torch_available() |
|
else {} |
|
) |
|
|
|
test_pruning = False |
|
test_torchscript = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
has_attentions = False |
|
|
|
def setUp(self): |
|
self.model_tester = CvtModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.create_and_test_config_common_properties() |
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.create_and_test_config_with_num_labels() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
self.config_tester.check_config_arguments_init() |
|
|
|
def create_and_test_config_common_properties(self): |
|
return |
|
|
|
@unittest.skip(reason="Cvt does not output attentions") |
|
def test_attention_outputs(self): |
|
pass |
|
|
|
@unittest.skip(reason="Cvt does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Cvt does not support input and output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_hidden_states_output(self): |
|
def check_hidden_states_output(inputs_dict, config, model_class): |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
hidden_states = outputs.hidden_states |
|
|
|
expected_num_layers = len(self.model_tester.depth) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
|
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-3:]), |
|
[ |
|
self.model_tester.embed_dim[0], |
|
self.model_tester.image_size // 4, |
|
self.model_tester.image_size // 4, |
|
], |
|
) |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
def test_for_image_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = CvtModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
|
|
def prepare_img(): |
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
return image |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class CvtModelIntegrationTest(unittest.TestCase): |
|
@cached_property |
|
def default_feature_extractor(self): |
|
return AutoFeatureExtractor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) |
|
|
|
@slow |
|
def test_inference_image_classification_head(self): |
|
model = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
expected_shape = torch.Size((1, 1000)) |
|
self.assertEqual(outputs.logits.shape, expected_shape) |
|
|
|
expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device) |
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) |
|
|