|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import shutil |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import BatchEncoding, CanineTokenizer |
|
from transformers.testing_utils import require_tokenizers, require_torch |
|
from transformers.tokenization_utils import AddedToken |
|
from transformers.utils import cached_property |
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin |
|
|
|
|
|
class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase): |
|
tokenizer_class = CanineTokenizer |
|
test_rust_tokenizer = False |
|
|
|
def setUp(self): |
|
super().setUp() |
|
tokenizer = CanineTokenizer() |
|
tokenizer.save_pretrained(self.tmpdirname) |
|
|
|
@cached_property |
|
def canine_tokenizer(self): |
|
return CanineTokenizer.from_pretrained("google/canine-s") |
|
|
|
def get_tokenizer(self, **kwargs) -> CanineTokenizer: |
|
tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
tokenizer._unicode_vocab_size = 1024 |
|
return tokenizer |
|
|
|
@require_torch |
|
def test_prepare_batch_integration(self): |
|
tokenizer = self.canine_tokenizer |
|
src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."] |
|
|
|
expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] |
|
|
|
batch = tokenizer(src_text, padding=True, return_tensors="pt") |
|
self.assertIsInstance(batch, BatchEncoding) |
|
|
|
result = list(batch.input_ids.numpy()[0]) |
|
|
|
self.assertListEqual(expected_src_tokens, result) |
|
|
|
self.assertEqual((2, 39), batch.input_ids.shape) |
|
self.assertEqual((2, 39), batch.attention_mask.shape) |
|
|
|
@require_torch |
|
def test_encoding_keys(self): |
|
tokenizer = self.canine_tokenizer |
|
src_text = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] |
|
batch = tokenizer(src_text, padding=True, return_tensors="pt") |
|
|
|
self.assertIn("input_ids", batch) |
|
self.assertIn("attention_mask", batch) |
|
self.assertIn("token_type_ids", batch) |
|
|
|
@require_torch |
|
def test_max_length_integration(self): |
|
tokenizer = self.canine_tokenizer |
|
tgt_text = [ |
|
"What's the weater?", |
|
"It's about 25 degrees.", |
|
] |
|
targets = tokenizer( |
|
text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt" |
|
) |
|
self.assertEqual(32, targets["input_ids"].shape[1]) |
|
|
|
|
|
def test_save_and_load_tokenizer(self): |
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
self.assertNotEqual(tokenizer.model_max_length, 42) |
|
|
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
self.assertListEqual(before_tokens, after_tokens) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
tokenizers = self.get_tokenizers(model_max_length=42) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
|
|
additional_special_tokens = tokenizer.additional_special_tokens |
|
|
|
|
|
new_additional_special_token = chr(0xE007) |
|
additional_special_tokens.append(new_additional_special_token) |
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
self.assertListEqual(before_tokens, after_tokens) |
|
self.assertIn(new_additional_special_token, after_tokenizer.additional_special_tokens) |
|
self.assertEqual(after_tokenizer.model_max_length, 42) |
|
|
|
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) |
|
self.assertEqual(tokenizer.model_max_length, 43) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
def test_add_special_tokens(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
input_text, ids = self.get_clean_sequence(tokenizer) |
|
|
|
|
|
SPECIAL_TOKEN = 0xE005 |
|
special_token = chr(SPECIAL_TOKEN) |
|
|
|
tokenizer.add_special_tokens({"cls_token": special_token}) |
|
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) |
|
self.assertEqual(len(encoded_special_token), 1) |
|
|
|
text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) |
|
encoded = tokenizer.encode(text, add_special_tokens=False) |
|
|
|
input_encoded = tokenizer.encode(input_text, add_special_tokens=False) |
|
special_token_id = tokenizer.encode(special_token, add_special_tokens=False) |
|
self.assertEqual(encoded, input_encoded + special_token_id) |
|
|
|
decoded = tokenizer.decode(encoded, skip_special_tokens=True) |
|
self.assertTrue(special_token not in decoded) |
|
|
|
def test_tokenize_special_tokens(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=True) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
SPECIAL_TOKEN_1 = chr(0xE005) |
|
SPECIAL_TOKEN_2 = chr(0xE006) |
|
|
|
|
|
tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) |
|
|
|
|
|
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) |
|
|
|
token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) |
|
token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) |
|
|
|
self.assertEqual(len(token_1), 1) |
|
self.assertEqual(len(token_2), 1) |
|
self.assertEqual(token_1[0], SPECIAL_TOKEN_1) |
|
self.assertEqual(token_2[0], SPECIAL_TOKEN_2) |
|
|
|
@require_tokenizers |
|
def test_added_token_serializable(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
NEW_TOKEN = 0xE006 |
|
new_token = chr(NEW_TOKEN) |
|
|
|
new_token = AddedToken(new_token, lstrip=True) |
|
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
tokenizer.save_pretrained(tmp_dir_name) |
|
tokenizer.from_pretrained(tmp_dir_name) |
|
|
|
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): |
|
tokenizer_list = [] |
|
if self.test_slow_tokenizer: |
|
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) |
|
|
|
if self.test_rust_tokenizer: |
|
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) |
|
|
|
for tokenizer_class, tokenizer_utils in tokenizer_list: |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer_utils.save_pretrained(tmp_dir) |
|
|
|
with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: |
|
special_tokens_map = json.load(json_file) |
|
|
|
with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: |
|
tokenizer_config = json.load(json_file) |
|
|
|
|
|
NEW_TOKEN = 0xE006 |
|
new_token_1 = chr(NEW_TOKEN) |
|
|
|
special_tokens_map["additional_special_tokens"] = [new_token_1] |
|
tokenizer_config["additional_special_tokens"] = [new_token_1] |
|
|
|
with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: |
|
json.dump(special_tokens_map, outfile) |
|
with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: |
|
json.dump(tokenizer_config, outfile) |
|
|
|
|
|
|
|
|
|
tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir, extra_ids=0) |
|
self.assertIn(new_token_1, tokenizer_without_change_in_init.additional_special_tokens) |
|
|
|
self.assertEqual( |
|
[new_token_1], |
|
tokenizer_without_change_in_init.convert_ids_to_tokens( |
|
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_1]) |
|
), |
|
) |
|
|
|
NEW_TOKEN = 0xE007 |
|
new_token_2 = chr(NEW_TOKEN) |
|
|
|
new_added_tokens = [AddedToken(new_token_2, lstrip=True)] |
|
tokenizer = tokenizer_class.from_pretrained( |
|
tmp_dir, additional_special_tokens=new_added_tokens, extra_ids=0 |
|
) |
|
|
|
self.assertIn(new_token_2, tokenizer.additional_special_tokens) |
|
|
|
self.assertEqual( |
|
[new_token_2], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_2])) |
|
) |
|
|
|
@require_tokenizers |
|
def test_encode_decode_with_spaces(self): |
|
tokenizers = self.get_tokenizers(do_lower_case=False) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
input = "hello world" |
|
if self.space_between_special_tokens: |
|
output = "[CLS] hello world [SEP]" |
|
else: |
|
output = input |
|
encoded = tokenizer.encode(input, add_special_tokens=False) |
|
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) |
|
self.assertIn(decoded, [output, output.lower()]) |
|
|
|
|
|
def test_tokenizers_common_ids_setters(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
attributes_list = [ |
|
"bos_token", |
|
"eos_token", |
|
"unk_token", |
|
"sep_token", |
|
"pad_token", |
|
"cls_token", |
|
"mask_token", |
|
] |
|
|
|
token_to_test_setters = "a" |
|
token_id_to_test_setters = ord(token_to_test_setters) |
|
|
|
for attr in attributes_list: |
|
setattr(tokenizer, attr + "_id", None) |
|
self.assertEqual(getattr(tokenizer, attr), None) |
|
self.assertEqual(getattr(tokenizer, attr + "_id"), None) |
|
|
|
setattr(tokenizer, attr + "_id", token_id_to_test_setters) |
|
self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) |
|
self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) |
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", []) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) |
|
|
|
additional_special_token_id = 0xE006 |
|
additional_special_token = chr(additional_special_token_id) |
|
setattr(tokenizer, "additional_special_tokens_ids", [additional_special_token_id]) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [additional_special_token]) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [additional_special_token_id]) |
|
|
|
|
|
def test_add_tokens_tokenizer(self): |
|
pass |
|
|
|
|
|
|
|
def test_added_tokens_do_lower_case(self): |
|
pass |
|
|
|
|
|
def test_np_encode_plus_sent_to_model(self): |
|
pass |
|
|
|
|
|
def test_torch_encode_plus_sent_to_model(self): |
|
pass |
|
|
|
|
|
def test_pretrained_model_lists(self): |
|
pass |
|
|
|
|
|
def test_get_vocab(self): |
|
pass |
|
|
|
|
|
def test_pretokenized_inputs(self): |
|
pass |
|
|
|
|
|
def test_conversion_reversible(self): |
|
pass |
|
|