|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import re |
|
import shutil |
|
import tempfile |
|
import unittest |
|
from typing import Tuple |
|
|
|
from transformers import AddedToken, BatchEncoding, ByT5Tokenizer |
|
from transformers.utils import cached_property, is_tf_available, is_torch_available |
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
FRAMEWORK = "pt" |
|
elif is_tf_available(): |
|
FRAMEWORK = "tf" |
|
else: |
|
FRAMEWORK = "jax" |
|
|
|
|
|
class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase): |
|
tokenizer_class = ByT5Tokenizer |
|
test_rust_tokenizer = False |
|
|
|
def setUp(self): |
|
super().setUp() |
|
tokenizer = ByT5Tokenizer() |
|
tokenizer.save_pretrained(self.tmpdirname) |
|
|
|
@cached_property |
|
def t5_base_tokenizer(self): |
|
return ByT5Tokenizer.from_pretrained("google/byt5-small") |
|
|
|
def get_tokenizer(self, **kwargs) -> ByT5Tokenizer: |
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
toks = [] |
|
for i in range(len(tokenizer)): |
|
try: |
|
tok = tokenizer.decode([i], clean_up_tokenization_spaces=False) |
|
except UnicodeDecodeError: |
|
pass |
|
toks.append((i, tok)) |
|
|
|
toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) |
|
toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks)) |
|
if max_length is not None and len(toks) > max_length: |
|
toks = toks[:max_length] |
|
if min_length is not None and len(toks) < min_length and len(toks) > 0: |
|
while len(toks) < min_length: |
|
toks = toks + toks |
|
|
|
toks_ids = [t[0] for t in toks] |
|
|
|
|
|
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) |
|
if " " not in output_txt and len(toks_ids) > 1: |
|
output_txt = ( |
|
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) |
|
+ " " |
|
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) |
|
) |
|
if with_prefix_space: |
|
output_txt = " " + output_txt |
|
output_ids = tokenizer.encode(output_txt, add_special_tokens=False) |
|
return output_txt, output_ids |
|
|
|
def test_eos_treatment(self): |
|
tokenizer = self.t5_base_tokenizer |
|
batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) |
|
batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) |
|
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) |
|
|
|
def test_multibytes_char(self): |
|
tokenizer = self.t5_base_tokenizer |
|
src_text = "Unicode €." |
|
encoded = tokenizer(src_text) |
|
encoded_ids = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] |
|
self.assertEqual(encoded["input_ids"], encoded_ids) |
|
|
|
|
|
decoded = tokenizer.decode(encoded_ids) |
|
self.assertEqual(decoded, "Unicode €.</s>") |
|
|
|
encoded = tokenizer("e è é ê ë") |
|
encoded_ids = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] |
|
self.assertEqual(encoded["input_ids"], encoded_ids) |
|
|
|
decoded = tokenizer.decode(encoded_ids) |
|
self.assertEqual(decoded, "e è é ê ë</s>") |
|
|
|
|
|
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>") |
|
|
|
def test_prepare_batch_integration(self): |
|
tokenizer = self.t5_base_tokenizer |
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] |
|
|
|
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] |
|
|
|
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) |
|
self.assertIsInstance(batch, BatchEncoding) |
|
|
|
if FRAMEWORK != "jax": |
|
result = list(batch.input_ids.numpy()[0]) |
|
else: |
|
result = list(batch.input_ids.tolist()[0]) |
|
|
|
self.assertListEqual(expected_src_tokens, result) |
|
|
|
self.assertEqual((2, 37), batch.input_ids.shape) |
|
self.assertEqual((2, 37), batch.attention_mask.shape) |
|
|
|
def test_empty_target_text(self): |
|
tokenizer = self.t5_base_tokenizer |
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] |
|
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) |
|
|
|
self.assertIn("input_ids", batch) |
|
self.assertIn("attention_mask", batch) |
|
self.assertNotIn("decoder_input_ids", batch) |
|
self.assertNotIn("decoder_attention_mask", batch) |
|
|
|
def test_max_length_integration(self): |
|
tokenizer = self.t5_base_tokenizer |
|
tgt_text = [ |
|
"Summary of the text.", |
|
"Another summary.", |
|
] |
|
targets = tokenizer( |
|
text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK |
|
) |
|
self.assertEqual(32, targets["input_ids"].shape[1]) |
|
|
|
def test_eos_in_input(self): |
|
tokenizer = self.t5_base_tokenizer |
|
src_text = ["A long paragraph for summarization. </s>"] |
|
tgt_text = ["Summary of the text. </s>"] |
|
|
|
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] |
|
expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] |
|
|
|
|
|
batch = tokenizer(src_text, text_target=tgt_text) |
|
|
|
self.assertEqual(expected_src_tokens, batch["input_ids"][0]) |
|
self.assertEqual(expected_tgt_tokens, batch["labels"][0]) |
|
|
|
|
|
def test_save_and_load_tokenizer(self): |
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
self.assertNotEqual(tokenizer.model_max_length, 42) |
|
|
|
|
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
self.assertListEqual(before_tokens, after_tokens) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
tokenizers = self.get_tokenizers(model_max_length=42) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
|
|
tmpdirname = tempfile.mkdtemp() |
|
|
|
sample_text = " He is very happy, UNwant\u00E9d,running" |
|
tokenizer.add_tokens(["bim", "bambam"]) |
|
additional_special_tokens = tokenizer.additional_special_tokens |
|
additional_special_tokens.append("new_additional_special_token") |
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) |
|
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) |
|
tokenizer.save_pretrained(tmpdirname) |
|
|
|
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) |
|
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) |
|
self.assertListEqual(before_tokens, after_tokens) |
|
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) |
|
self.assertEqual(after_tokenizer.model_max_length, 42) |
|
|
|
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) |
|
self.assertEqual(tokenizer.model_max_length, 43) |
|
|
|
shutil.rmtree(tmpdirname) |
|
|
|
|
|
|
|
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): |
|
tokenizer_list = [] |
|
if self.test_slow_tokenizer: |
|
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) |
|
|
|
if self.test_rust_tokenizer: |
|
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) |
|
|
|
for tokenizer_class, tokenizer_utils in tokenizer_list: |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer_utils.save_pretrained(tmp_dir) |
|
|
|
with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: |
|
special_tokens_map = json.load(json_file) |
|
|
|
with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: |
|
tokenizer_config = json.load(json_file) |
|
|
|
added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(125)] |
|
|
|
special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ |
|
"an_additional_special_token" |
|
] |
|
tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ |
|
"an_additional_special_token" |
|
] |
|
|
|
with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: |
|
json.dump(special_tokens_map, outfile) |
|
with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: |
|
json.dump(tokenizer_config, outfile) |
|
|
|
|
|
|
|
|
|
tokenizer_without_change_in_init = tokenizer_class.from_pretrained( |
|
tmp_dir, |
|
) |
|
self.assertIn( |
|
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens |
|
) |
|
|
|
self.assertEqual( |
|
["an_additional_special_token"], |
|
tokenizer_without_change_in_init.convert_ids_to_tokens( |
|
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) |
|
), |
|
) |
|
|
|
|
|
new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] |
|
tokenizer = tokenizer_class.from_pretrained( |
|
tmp_dir, |
|
additional_special_tokens=new_added_tokens, |
|
) |
|
|
|
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) |
|
self.assertEqual( |
|
["a_new_additional_special_token"], |
|
tokenizer.convert_ids_to_tokens( |
|
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) |
|
), |
|
) |
|
|
|
def test_decode_single_bytes(self): |
|
tokenizer_list = [] |
|
if self.test_slow_tokenizer: |
|
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) |
|
|
|
if self.test_rust_tokenizer: |
|
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) |
|
|
|
for tokenizer_class, tokenizer_utils in tokenizer_list: |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
tokenizer_utils.save_pretrained(tmp_dir) |
|
|
|
tokenizer = tokenizer_class.from_pretrained(tmp_dir) |
|
|
|
self.assertTrue(tokenizer.decode([255]) == "") |
|
|
|
|
|
def test_pretrained_model_lists(self): |
|
pass |
|
|
|
|
|
def test_get_vocab(self): |
|
pass |
|
|
|
|
|
def test_pretokenized_inputs(self): |
|
pass |
|
|
|
|
|
def test_conversion_reversible(self): |
|
pass |
|
|
|
def test_convert_tokens_to_string_format(self): |
|
|
|
|
|
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
tokens = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] |
|
string = tokenizer.convert_tokens_to_string(tokens) |
|
|
|
self.assertIsInstance(string, str) |
|
|
|
|
|
|
|
def test_tokenizers_common_ids_setters(self): |
|
tokenizers = self.get_tokenizers() |
|
for tokenizer in tokenizers: |
|
with self.subTest(f"{tokenizer.__class__.__name__}"): |
|
attributes_list = [ |
|
"bos_token", |
|
"eos_token", |
|
"unk_token", |
|
"sep_token", |
|
"pad_token", |
|
"cls_token", |
|
"mask_token", |
|
] |
|
|
|
token_id_to_test_setters = 0 |
|
token_to_test_setters = tokenizer.convert_ids_to_tokens( |
|
token_id_to_test_setters, skip_special_tokens=False |
|
) |
|
|
|
for attr in attributes_list: |
|
setattr(tokenizer, attr + "_id", None) |
|
self.assertEqual(getattr(tokenizer, attr), None) |
|
self.assertEqual(getattr(tokenizer, attr + "_id"), None) |
|
|
|
setattr(tokenizer, attr + "_id", token_id_to_test_setters) |
|
self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) |
|
self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) |
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", []) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) |
|
|
|
setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters]) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters]) |
|
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters]) |
|
|