|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch Blip model. """ |
|
|
|
|
|
import inspect |
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import requests |
|
|
|
from transformers import BlipConfig, BlipTextConfig, BlipVisionConfig |
|
from transformers.testing_utils import require_torch, require_torch_gpu, require_vision, slow, torch_device |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ( |
|
ModelTesterMixin, |
|
_config_zero_init, |
|
floats_tensor, |
|
ids_tensor, |
|
random_attention_mask, |
|
) |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch import nn |
|
|
|
from transformers import ( |
|
BlipForConditionalGeneration, |
|
BlipForImageTextRetrieval, |
|
BlipForQuestionAnswering, |
|
BlipModel, |
|
BlipTextModel, |
|
BlipVisionModel, |
|
) |
|
from transformers.models.blip.modeling_blip import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import BlipProcessor |
|
|
|
|
|
class BlipVisionModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=12, |
|
image_size=30, |
|
patch_size=2, |
|
num_channels=3, |
|
is_training=True, |
|
hidden_size=32, |
|
projection_dim=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
dropout=0.1, |
|
attention_dropout=0.1, |
|
initializer_range=1e-10, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.is_training = is_training |
|
self.hidden_size = hidden_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.initializer_range = initializer_range |
|
self.scope = scope |
|
|
|
|
|
num_patches = (image_size // patch_size) ** 2 |
|
self.seq_length = num_patches + 1 |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
config = self.get_config() |
|
|
|
return config, pixel_values |
|
|
|
def get_config(self): |
|
return BlipVisionConfig( |
|
image_size=self.image_size, |
|
patch_size=self.patch_size, |
|
num_channels=self.num_channels, |
|
hidden_size=self.hidden_size, |
|
projection_dim=self.projection_dim, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
dropout=self.dropout, |
|
attention_dropout=self.attention_dropout, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
def create_and_check_model(self, config, pixel_values): |
|
model = BlipVisionModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(pixel_values) |
|
|
|
image_size = (self.image_size, self.image_size) |
|
patch_size = (self.patch_size, self.patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, pixel_values = config_and_inputs |
|
inputs_dict = {"pixel_values": pixel_values} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BlipVisionModelTest(ModelTesterMixin, unittest.TestCase): |
|
""" |
|
Here we also overwrite some of the tests of test_modeling_common.py, as Blip does not use input_ids, inputs_embeds, |
|
attention_mask and seq_length. |
|
""" |
|
|
|
all_model_classes = (BlipVisionModel,) if is_torch_available() else () |
|
fx_compatible = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = BlipVisionModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BlipVisionConfig, has_text_modality=False, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
@unittest.skip(reason="Blip does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
def test_model_common_attributes(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) |
|
x = model.get_output_embeddings() |
|
self.assertTrue(x is None or isinstance(x, nn.Linear)) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def test_training_gradient_checkpointing(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_from_base(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_to_base(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BlipVisionModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
class BlipTextModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=12, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_labels=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
projection_dim=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
dropout=0.1, |
|
attention_dropout=0.1, |
|
max_position_embeddings=512, |
|
initializer_range=0.02, |
|
bos_token_id=0, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.scope = scope |
|
self.bos_token_id = bos_token_id |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
if input_mask is not None: |
|
batch_size, seq_length = input_mask.shape |
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) |
|
for batch_idx, start_index in enumerate(rnd_start_indices): |
|
input_mask[batch_idx, :start_index] = 1 |
|
input_mask[batch_idx, start_index:] = 0 |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, input_mask |
|
|
|
def get_config(self): |
|
return BlipTextConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
projection_dim=self.projection_dim, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
dropout=self.dropout, |
|
attention_dropout=self.attention_dropout, |
|
max_position_embeddings=self.max_position_embeddings, |
|
initializer_range=self.initializer_range, |
|
bos_token_id=self.bos_token_id, |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, input_mask): |
|
model = BlipTextModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, attention_mask=input_mask) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, input_mask = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BlipTextModelTest(ModelTesterMixin, unittest.TestCase): |
|
all_model_classes = (BlipTextModel,) if is_torch_available() else () |
|
fx_compatible = False |
|
test_pruning = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = BlipTextModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def test_training_gradient_checkpointing(self): |
|
pass |
|
|
|
@unittest.skip(reason="Blip does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_from_base(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_to_base(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BlipTextModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
class BlipModelTester: |
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): |
|
if text_kwargs is None: |
|
text_kwargs = {} |
|
if vision_kwargs is None: |
|
vision_kwargs = {} |
|
|
|
self.parent = parent |
|
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) |
|
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) |
|
self.is_training = is_training |
|
|
|
def prepare_config_and_inputs(self): |
|
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() |
|
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, attention_mask, pixel_values |
|
|
|
def get_config(self): |
|
return BlipConfig.from_text_vision_configs( |
|
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): |
|
model = BlipModel(config).to(torch_device).eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, pixel_values, attention_mask) |
|
self.parent.assertEqual( |
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) |
|
) |
|
self.parent.assertEqual( |
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, attention_mask, pixel_values = config_and_inputs |
|
inputs_dict = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"pixel_values": pixel_values, |
|
"return_loss": True, |
|
} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BlipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (BlipModel,) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": BlipModel, "image-to-text": BlipForConditionalGeneration} |
|
if is_torch_available() |
|
else {} |
|
) |
|
fx_compatible = False |
|
test_head_masking = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_attention_outputs = False |
|
|
|
def setUp(self): |
|
self.model_tester = BlipModelTester(self) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests") |
|
def test_hidden_states_output(self): |
|
pass |
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests") |
|
def test_retain_grad_hidden_states_attentions(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipModel does not have input/output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
|
|
if name == "logit_scale": |
|
self.assertAlmostEqual( |
|
param.data.item(), |
|
np.log(1 / 0.07), |
|
delta=1e-3, |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
else: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict): |
|
if not self.test_torchscript: |
|
return |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.torchscript = True |
|
configs_no_init.return_dict = False |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
try: |
|
input_ids = inputs_dict["input_ids"] |
|
pixel_values = inputs_dict["pixel_values"] |
|
traced_model = torch.jit.trace(model, (input_ids, pixel_values)) |
|
except RuntimeError: |
|
self.fail("Couldn't trace module.") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") |
|
|
|
try: |
|
torch.jit.save(traced_model, pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't save module.") |
|
|
|
try: |
|
loaded_model = torch.jit.load(pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't load module.") |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
loaded_model.to(torch_device) |
|
loaded_model.eval() |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_model_state_dict = loaded_model.state_dict() |
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) |
|
|
|
models_equal = True |
|
for layer_name, p1 in model_state_dict.items(): |
|
p2 = loaded_model_state_dict[layer_name] |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
def test_load_vision_text_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
text_config = BlipTextConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BlipModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
class BlipTextRetrievalModelTester: |
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): |
|
if text_kwargs is None: |
|
text_kwargs = {} |
|
if vision_kwargs is None: |
|
vision_kwargs = {} |
|
|
|
self.parent = parent |
|
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) |
|
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) |
|
self.is_training = is_training |
|
|
|
def prepare_config_and_inputs(self): |
|
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() |
|
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, attention_mask, pixel_values |
|
|
|
def get_config(self): |
|
return BlipConfig.from_text_vision_configs( |
|
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): |
|
model = BlipModel(config).to(torch_device).eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, pixel_values, attention_mask) |
|
self.parent.assertEqual( |
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) |
|
) |
|
self.parent.assertEqual( |
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, attention_mask, pixel_values = config_and_inputs |
|
inputs_dict = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"pixel_values": pixel_values, |
|
} |
|
return config, inputs_dict |
|
|
|
|
|
class BlipTextImageModelsModelTester: |
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): |
|
if text_kwargs is None: |
|
text_kwargs = {} |
|
if vision_kwargs is None: |
|
vision_kwargs = {} |
|
|
|
self.parent = parent |
|
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs) |
|
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs) |
|
self.is_training = is_training |
|
|
|
def prepare_config_and_inputs(self): |
|
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() |
|
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, attention_mask, pixel_values |
|
|
|
def get_config(self): |
|
return BlipConfig.from_text_vision_configs( |
|
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): |
|
model = BlipModel(config).to(torch_device).eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, pixel_values, attention_mask) |
|
self.parent.assertEqual( |
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) |
|
) |
|
self.parent.assertEqual( |
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, attention_mask, pixel_values = config_and_inputs |
|
inputs_dict = { |
|
"input_ids": input_ids, |
|
"labels": input_ids, |
|
"attention_mask": attention_mask, |
|
"pixel_values": pixel_values, |
|
} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class BlipVQAModelTest(unittest.TestCase): |
|
all_model_classes = (BlipForQuestionAnswering,) if is_torch_available() else () |
|
|
|
def setUp(self): |
|
self.model_tester = BlipModelTester(self) |
|
|
|
def _prepare_inputs_for_vqa(self): |
|
_, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
inputs_dict["labels"] = inputs_dict["input_ids"] |
|
inputs_dict.pop("return_loss") |
|
return inputs_dict |
|
|
|
def test_class_name_consistency(self): |
|
""" |
|
Tests that all VQA models have a class name that ends with "ForQuestionAnswering" |
|
""" |
|
for model_class in self.all_model_classes: |
|
model = model_class(self.model_tester.get_config()) |
|
self.assertTrue( |
|
model.__class__.__name__.endswith("ForQuestionAnswering"), |
|
f"Class name should end with 'ForVisualQuestionAnswering' got {model.__class__.__name__}", |
|
) |
|
|
|
def test_training(self): |
|
""" |
|
Tests that all VQA models can be trained on a single batch |
|
""" |
|
for model_class in self.all_model_classes: |
|
model = model_class(self.model_tester.get_config()).to(torch_device) |
|
model.train() |
|
loss = model(**self._prepare_inputs_for_vqa()).loss |
|
loss.backward() |
|
|
|
|
|
for name, param in model.named_parameters(): |
|
self.assertIsNotNone(param.grad, f"Gradients should not be None - got {param.grad} for {name}") |
|
|
|
def test_forward_signature(self): |
|
""" |
|
Test if the forward function has the expected arguments. |
|
""" |
|
for model_class in self.all_model_classes: |
|
model = model_class(self.model_tester.get_config()) |
|
signature = inspect.signature(model.forward) |
|
|
|
args = list(signature.parameters.keys()) |
|
expected_args = [ |
|
"input_ids", |
|
"attention_mask", |
|
"labels", |
|
"decoder_input_ids", |
|
"decoder_attention_mask", |
|
] |
|
for arg in expected_args: |
|
self.assertTrue( |
|
arg in args, |
|
f"Argument {arg} of forward function signature should include {arg}. Found {args}.", |
|
) |
|
|
|
|
|
@require_torch |
|
class BlipTextRetrievalModelTest(ModelTesterMixin, unittest.TestCase): |
|
all_model_classes = (BlipForImageTextRetrieval,) if is_torch_available() else () |
|
fx_compatible = False |
|
test_head_masking = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_attention_outputs = False |
|
test_torchscript = False |
|
|
|
def setUp(self): |
|
self.model_tester = BlipTextRetrievalModelTester(self) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests") |
|
def test_hidden_states_output(self): |
|
pass |
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests") |
|
def test_retain_grad_hidden_states_attentions(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipModel does not have input/output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = [ |
|
"input_ids", |
|
"attention_mask", |
|
"decoder_input_ids", |
|
"decoder_attention_mask", |
|
] |
|
expected_arg_names.extend( |
|
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] |
|
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names |
|
else ["encoder_outputs"] |
|
) |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
else: |
|
expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_training(self): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
for model_class in self.all_model_classes[:-1]: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
|
|
|
|
inputs["labels"] = inputs["input_ids"] |
|
|
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
def test_training_gradient_checkpointing(self): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
for model_class in self.all_model_classes[:-1]: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.use_cache = False |
|
config.return_dict = True |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.gradient_checkpointing_enable() |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
|
|
|
|
inputs["labels"] = inputs["input_ids"] |
|
|
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
|
|
if name == "logit_scale": |
|
self.assertAlmostEqual( |
|
param.data.item(), |
|
np.log(1 / 0.07), |
|
delta=1e-3, |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
else: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict): |
|
if not self.test_torchscript: |
|
return |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.torchscript = True |
|
configs_no_init.return_dict = False |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
try: |
|
input_ids = inputs_dict["input_ids"] |
|
pixel_values = inputs_dict["pixel_values"] |
|
traced_model = torch.jit.trace(model, (input_ids, pixel_values)) |
|
except RuntimeError: |
|
self.fail("Couldn't trace module.") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") |
|
|
|
try: |
|
torch.jit.save(traced_model, pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't save module.") |
|
|
|
try: |
|
loaded_model = torch.jit.load(pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't load module.") |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
loaded_model.to(torch_device) |
|
loaded_model.eval() |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_model_state_dict = loaded_model.state_dict() |
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) |
|
|
|
models_equal = True |
|
for layer_name, p1 in model_state_dict.items(): |
|
p2 = loaded_model_state_dict[layer_name] |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
def test_load_vision_text_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
text_config = BlipTextConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BlipModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_torch |
|
class BlipTextImageModelTest(ModelTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
BlipForConditionalGeneration, |
|
BlipForQuestionAnswering, |
|
) |
|
if is_torch_available() |
|
else () |
|
) |
|
fx_compatible = False |
|
test_head_masking = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_attention_outputs = False |
|
test_torchscript = False |
|
|
|
def setUp(self): |
|
self.model_tester = BlipTextImageModelsModelTester(self) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests") |
|
def test_hidden_states_output(self): |
|
pass |
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests") |
|
def test_retain_grad_hidden_states_attentions(self): |
|
pass |
|
|
|
@unittest.skip(reason="BlipModel does not have input/output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
if model.config.is_encoder_decoder: |
|
expected_arg_names = [ |
|
"input_ids", |
|
"attention_mask", |
|
"decoder_input_ids", |
|
"decoder_attention_mask", |
|
] |
|
expected_arg_names.extend( |
|
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] |
|
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names |
|
else ["encoder_outputs"] |
|
) |
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) |
|
else: |
|
expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_training(self): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
for model_class in self.all_model_classes[:-1]: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
|
|
|
|
inputs["labels"] = inputs["input_ids"] |
|
|
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
def test_training_gradient_checkpointing(self): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
for model_class in self.all_model_classes[:-1]: |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.use_cache = False |
|
config.return_dict = True |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.gradient_checkpointing_enable() |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
|
|
|
|
inputs["labels"] = inputs["input_ids"] |
|
|
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
|
|
if name == "logit_scale": |
|
self.assertAlmostEqual( |
|
param.data.item(), |
|
np.log(1 / 0.07), |
|
delta=1e-3, |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
else: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict): |
|
if not self.test_torchscript: |
|
return |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.torchscript = True |
|
configs_no_init.return_dict = False |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
try: |
|
input_ids = inputs_dict["input_ids"] |
|
pixel_values = inputs_dict["pixel_values"] |
|
traced_model = torch.jit.trace(model, (input_ids, pixel_values)) |
|
except RuntimeError: |
|
self.fail("Couldn't trace module.") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") |
|
|
|
try: |
|
torch.jit.save(traced_model, pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't save module.") |
|
|
|
try: |
|
loaded_model = torch.jit.load(pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't load module.") |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
loaded_model.to(torch_device) |
|
loaded_model.eval() |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_model_state_dict = loaded_model.state_dict() |
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) |
|
|
|
models_equal = True |
|
for layer_name, p1 in model_state_dict.items(): |
|
p2 = loaded_model_state_dict[layer_name] |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
def test_load_vision_text_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
text_config = BlipTextConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = BlipModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
|
|
def prepare_img(): |
|
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg" |
|
im = Image.open(requests.get(url, stream=True).raw) |
|
return im |
|
|
|
|
|
@require_vision |
|
@require_torch |
|
@slow |
|
class BlipModelIntegrationTest(unittest.TestCase): |
|
def test_inference_image_captioning(self): |
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(torch_device) |
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
image = prepare_img() |
|
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
predictions = model.generate(**inputs) |
|
|
|
|
|
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]) |
|
|
|
|
|
context = ["a picture of"] |
|
inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device) |
|
|
|
predictions = model.generate(**inputs) |
|
|
|
|
|
self.assertEqual( |
|
predictions[0].tolist(), |
|
[30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102], |
|
) |
|
|
|
@require_torch_gpu |
|
def test_inference_image_captioning_fp16(self): |
|
model = BlipForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip-image-captioning-base", torch_dtype=torch.float16 |
|
).to(torch_device) |
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
image = prepare_img() |
|
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(torch_device, torch.float16) |
|
|
|
predictions = model.generate(**inputs) |
|
|
|
|
|
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]) |
|
|
|
|
|
context = ["a picture of"] |
|
inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device, torch.float16) |
|
|
|
predictions = model.generate(**inputs) |
|
|
|
|
|
self.assertEqual( |
|
predictions[0].tolist(), |
|
[30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102], |
|
) |
|
|
|
def test_inference_vqa(self): |
|
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(torch_device) |
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
|
|
image = prepare_img() |
|
text = "how many dogs are in the picture?" |
|
|
|
inputs = processor(image, text=text, return_tensors="pt").to(torch_device) |
|
out = model.generate(**inputs) |
|
|
|
|
|
self.assertEqual(out[0].tolist(), [30522, 1015, 102]) |
|
|
|
def test_inference_itm(self): |
|
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco").to(torch_device) |
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base-coco") |
|
|
|
image = prepare_img() |
|
text = "A woman and her dog sitting in a beach" |
|
|
|
inputs = processor(image, text, return_tensors="pt").to(torch_device) |
|
|
|
out_itm = model(**inputs) |
|
out = model(**inputs, use_itm_head=False) |
|
|
|
expected_scores = torch.Tensor([[0.9798, 0.0202]]) |
|
|
|
self.assertTrue(torch.allclose(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3)) |
|
self.assertTrue(torch.allclose(out[0].cpu(), torch.Tensor([[0.5053]]), rtol=1e-3, atol=1e-3)) |
|
|