|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from transformers import AlbertConfig, is_torch_available |
|
from transformers.models.auto import get_values |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
MODEL_FOR_PRETRAINING_MAPPING, |
|
AlbertForMaskedLM, |
|
AlbertForMultipleChoice, |
|
AlbertForPreTraining, |
|
AlbertForQuestionAnswering, |
|
AlbertForSequenceClassification, |
|
AlbertForTokenClassification, |
|
AlbertModel, |
|
) |
|
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
class AlbertModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_token_type_ids=True, |
|
use_labels=True, |
|
vocab_size=99, |
|
embedding_size=16, |
|
hidden_size=36, |
|
num_hidden_layers=6, |
|
num_hidden_groups=6, |
|
num_attention_heads=6, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.embedding_size = embedding_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_hidden_groups = num_hidden_groups |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.num_labels = num_labels |
|
self.num_choices = num_choices |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
|
|
def get_config(self): |
|
return AlbertConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
type_vocab_size=self.type_vocab_size, |
|
initializer_range=self.initializer_range, |
|
num_hidden_groups=self.num_hidden_groups, |
|
) |
|
|
|
def create_and_check_model( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = AlbertModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) |
|
result = model(input_ids, token_type_ids=token_type_ids) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def create_and_check_for_pretraining( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = AlbertForPreTraining(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model( |
|
input_ids, |
|
attention_mask=input_mask, |
|
token_type_ids=token_type_ids, |
|
labels=token_labels, |
|
sentence_order_label=sequence_labels, |
|
) |
|
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels)) |
|
|
|
def create_and_check_for_masked_lm( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = AlbertForMaskedLM(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def create_and_check_for_question_answering( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
model = AlbertForQuestionAnswering(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model( |
|
input_ids, |
|
attention_mask=input_mask, |
|
token_type_ids=token_type_ids, |
|
start_positions=sequence_labels, |
|
end_positions=sequence_labels, |
|
) |
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) |
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) |
|
|
|
def create_and_check_for_sequence_classification( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_labels = self.num_labels |
|
model = AlbertForSequenceClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
def create_and_check_for_token_classification( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_labels = self.num_labels |
|
model = AlbertForTokenClassification(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) |
|
|
|
def create_and_check_for_multiple_choice( |
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels |
|
): |
|
config.num_choices = self.num_choices |
|
model = AlbertForMultipleChoice(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() |
|
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() |
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() |
|
result = model( |
|
multiple_choice_inputs_ids, |
|
attention_mask=multiple_choice_input_mask, |
|
token_type_ids=multiple_choice_token_type_ids, |
|
labels=choice_labels, |
|
) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
( |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class AlbertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = ( |
|
( |
|
AlbertModel, |
|
AlbertForPreTraining, |
|
AlbertForMaskedLM, |
|
AlbertForMultipleChoice, |
|
AlbertForSequenceClassification, |
|
AlbertForTokenClassification, |
|
AlbertForQuestionAnswering, |
|
) |
|
if is_torch_available() |
|
else () |
|
) |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": AlbertModel, |
|
"fill-mask": AlbertForMaskedLM, |
|
"question-answering": AlbertForQuestionAnswering, |
|
"text-classification": AlbertForSequenceClassification, |
|
"token-classification": AlbertForTokenClassification, |
|
"zero-shot": AlbertForSequenceClassification, |
|
} |
|
if is_torch_available() |
|
else {} |
|
) |
|
fx_compatible = True |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) |
|
|
|
if return_labels: |
|
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): |
|
inputs_dict["labels"] = torch.zeros( |
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device |
|
) |
|
inputs_dict["sentence_order_label"] = torch.zeros( |
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device |
|
) |
|
return inputs_dict |
|
|
|
def setUp(self): |
|
self.model_tester = AlbertModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_for_pretraining(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs) |
|
|
|
def test_for_masked_lm(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) |
|
|
|
def test_for_multiple_choice(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) |
|
|
|
def test_for_question_answering(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) |
|
|
|
def test_for_sequence_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) |
|
|
|
def test_model_various_embeddings(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
for type in ["absolute", "relative_key", "relative_key_query"]: |
|
config_and_inputs[0].position_embedding_type = type |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = AlbertModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_torch |
|
class AlbertModelIntegrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference_no_head_absolute_embedding(self): |
|
model = AlbertModel.from_pretrained("albert-base-v2") |
|
input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) |
|
attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) |
|
with torch.no_grad(): |
|
output = model(input_ids, attention_mask=attention_mask)[0] |
|
expected_shape = torch.Size((1, 11, 768)) |
|
self.assertEqual(output.shape, expected_shape) |
|
expected_slice = torch.tensor( |
|
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] |
|
) |
|
|
|
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) |
|
|