|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset.""" |
|
|
|
|
|
import argparse |
|
import glob |
|
import json |
|
import logging |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
from sklearn.metrics import f1_score |
|
from torch import nn |
|
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler |
|
from torch.utils.data.distributed import DistributedSampler |
|
from tqdm import tqdm, trange |
|
from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels |
|
|
|
import transformers |
|
from transformers import ( |
|
WEIGHTS_NAME, |
|
AdamW, |
|
AutoConfig, |
|
AutoModel, |
|
AutoTokenizer, |
|
MMBTConfig, |
|
MMBTForClassification, |
|
get_linear_schedule_with_warmup, |
|
) |
|
from transformers.trainer_utils import is_main_process |
|
|
|
|
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
except ImportError: |
|
from tensorboardX import SummaryWriter |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer, criterion): |
|
"""Train the model""" |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter() |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader( |
|
train_dataset, |
|
sampler=train_sampler, |
|
batch_size=args.train_batch_size, |
|
collate_fn=collate_fn, |
|
num_workers=args.num_workers, |
|
) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
no_decay = ["bias", "LayerNorm.weight"] |
|
optimizer_grouped_parameters = [ |
|
{ |
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
"weight_decay": args.weight_decay, |
|
}, |
|
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, |
|
] |
|
|
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total |
|
) |
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = nn.parallel.DistributedDataParallel( |
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True |
|
) |
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info( |
|
" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size |
|
* args.gradient_accumulation_steps |
|
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), |
|
) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
global_step = 0 |
|
tr_loss, logging_loss = 0.0, 0.0 |
|
best_f1, n_no_improve = 0, 0 |
|
model.zero_grad() |
|
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) |
|
set_seed(args) |
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in enumerate(epoch_iterator): |
|
model.train() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
labels = batch[5] |
|
inputs = { |
|
"input_ids": batch[0], |
|
"input_modal": batch[2], |
|
"attention_mask": batch[1], |
|
"modal_start_tokens": batch[3], |
|
"modal_end_tokens": batch[4], |
|
} |
|
outputs = model(**inputs) |
|
logits = outputs[0] |
|
loss = criterion(logits, labels) |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
tr_loss += loss.item() |
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
if args.fp16: |
|
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) |
|
else: |
|
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) |
|
|
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
logs = {} |
|
if ( |
|
args.local_rank == -1 and args.evaluate_during_training |
|
): |
|
results = evaluate(args, model, tokenizer, criterion) |
|
for key, value in results.items(): |
|
eval_key = "eval_{}".format(key) |
|
logs[eval_key] = value |
|
|
|
loss_scalar = (tr_loss - logging_loss) / args.logging_steps |
|
learning_rate_scalar = scheduler.get_lr()[0] |
|
logs["learning_rate"] = learning_rate_scalar |
|
logs["loss"] = loss_scalar |
|
logging_loss = tr_loss |
|
|
|
for key, value in logs.items(): |
|
tb_writer.add_scalar(key, value, global_step) |
|
print(json.dumps({**logs, **{"step": global_step}})) |
|
|
|
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: |
|
|
|
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME)) |
|
torch.save(args, os.path.join(output_dir, "training_args.bin")) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
epoch_iterator.close() |
|
break |
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank == -1: |
|
results = evaluate(args, model, tokenizer, criterion) |
|
if results["micro_f1"] > best_f1: |
|
best_f1 = results["micro_f1"] |
|
n_no_improve = 0 |
|
else: |
|
n_no_improve += 1 |
|
|
|
if n_no_improve > args.patience: |
|
train_iterator.close() |
|
break |
|
|
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
|
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def evaluate(args, model, tokenizer, criterion, prefix=""): |
|
|
|
eval_output_dir = args.output_dir |
|
eval_dataset = load_examples(args, tokenizer, evaluate=True) |
|
|
|
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(eval_output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) |
|
eval_dataloader = DataLoader( |
|
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn |
|
) |
|
|
|
|
|
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): |
|
model = nn.DataParallel(model) |
|
|
|
|
|
logger.info("***** Running evaluation {} *****".format(prefix)) |
|
logger.info(" Num examples = %d", len(eval_dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_loss = 0.0 |
|
nb_eval_steps = 0 |
|
preds = None |
|
out_label_ids = None |
|
for batch in tqdm(eval_dataloader, desc="Evaluating"): |
|
model.eval() |
|
batch = tuple(t.to(args.device) for t in batch) |
|
|
|
with torch.no_grad(): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
labels = batch[5] |
|
inputs = { |
|
"input_ids": batch[0], |
|
"input_modal": batch[2], |
|
"attention_mask": batch[1], |
|
"modal_start_tokens": batch[3], |
|
"modal_end_tokens": batch[4], |
|
} |
|
outputs = model(**inputs) |
|
logits = outputs[0] |
|
tmp_eval_loss = criterion(logits, labels) |
|
eval_loss += tmp_eval_loss.mean().item() |
|
nb_eval_steps += 1 |
|
if preds is None: |
|
preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5 |
|
out_label_ids = labels.detach().cpu().numpy() |
|
else: |
|
preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0) |
|
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) |
|
|
|
eval_loss = eval_loss / nb_eval_steps |
|
result = { |
|
"loss": eval_loss, |
|
"macro_f1": f1_score(out_label_ids, preds, average="macro"), |
|
"micro_f1": f1_score(out_label_ids, preds, average="micro"), |
|
} |
|
|
|
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results {} *****".format(prefix)) |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(result[key])) |
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
|
|
return result |
|
|
|
|
|
def load_examples(args, tokenizer, evaluate=False): |
|
path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl") |
|
transforms = get_image_transforms() |
|
labels = get_mmimdb_labels() |
|
dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2) |
|
return dataset |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument( |
|
"--data_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The input data dir. Should contain the .jsonl files for MMIMDB.", |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default="", |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
default=None, |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from huggingface.co", |
|
) |
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=128, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder" |
|
) |
|
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") |
|
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") |
|
parser.add_argument( |
|
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." |
|
) |
|
parser.add_argument( |
|
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." |
|
) |
|
|
|
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") |
|
parser.add_argument( |
|
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") |
|
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument( |
|
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." |
|
) |
|
parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.") |
|
parser.add_argument( |
|
"--max_steps", |
|
default=-1, |
|
type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", |
|
) |
|
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") |
|
|
|
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") |
|
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") |
|
parser.add_argument( |
|
"--eval_all_checkpoints", |
|
action="store_true", |
|
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", |
|
) |
|
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") |
|
parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading") |
|
parser.add_argument( |
|
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" |
|
) |
|
parser.add_argument( |
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") |
|
|
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", |
|
) |
|
parser.add_argument( |
|
"--fp16_opt_level", |
|
type=str, |
|
default="O1", |
|
help=( |
|
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html" |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") |
|
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") |
|
args = parser.parse_args() |
|
|
|
if ( |
|
os.path.exists(args.output_dir) |
|
and os.listdir(args.output_dir) |
|
and args.do_train |
|
and not args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( |
|
args.output_dir |
|
) |
|
) |
|
|
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
|
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend="nccl") |
|
args.n_gpu = 1 |
|
|
|
args.device = device |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, |
|
device, |
|
args.n_gpu, |
|
bool(args.local_rank != -1), |
|
args.fp16, |
|
) |
|
|
|
if is_main_process(args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
set_seed(args) |
|
|
|
|
|
if args.local_rank not in [-1, 0]: |
|
torch.distributed.barrier() |
|
|
|
|
|
labels = get_mmimdb_labels() |
|
num_labels = len(labels) |
|
transformer_config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
do_lower_case=args.do_lower_case, |
|
cache_dir=args.cache_dir, |
|
) |
|
transformer = AutoModel.from_pretrained( |
|
args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir |
|
) |
|
img_encoder = ImageEncoder(args) |
|
config = MMBTConfig(transformer_config, num_labels=num_labels) |
|
model = MMBTForClassification(config, transformer, img_encoder) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
if args.do_train: |
|
train_dataset = load_examples(args, tokenizer, evaluate=False) |
|
label_frequences = train_dataset.get_label_frequencies() |
|
label_frequences = [label_frequences[l] for l in labels] |
|
label_weights = ( |
|
torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset) |
|
) ** -1 |
|
criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights) |
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): |
|
logger.info("Saving model checkpoint to %s", args.output_dir) |
|
|
|
|
|
model_to_save = ( |
|
model.module if hasattr(model, "module") else model |
|
) |
|
torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME)) |
|
tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) |
|
|
|
|
|
model = MMBTForClassification(config, transformer, img_encoder) |
|
model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME))) |
|
tokenizer = AutoTokenizer.from_pretrained(args.output_dir) |
|
model.to(args.device) |
|
|
|
|
|
results = {} |
|
if args.do_eval and args.local_rank in [-1, 0]: |
|
checkpoints = [args.output_dir] |
|
if args.eval_all_checkpoints: |
|
checkpoints = [ |
|
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) |
|
] |
|
|
|
logger.info("Evaluate the following checkpoints: %s", checkpoints) |
|
for checkpoint in checkpoints: |
|
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" |
|
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" |
|
model = MMBTForClassification(config, transformer, img_encoder) |
|
model.load_state_dict(torch.load(checkpoint)) |
|
model.to(args.device) |
|
result = evaluate(args, model, tokenizer, criterion, prefix=prefix) |
|
result = {k + "_{}".format(global_step): v for k, v in result.items()} |
|
results.update(result) |
|
|
|
return results |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|