|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Bertology: this script shows how you can explore the internals of the models in the library to: |
|
- compute the entropy of the head attentions |
|
- compute the importance of each head |
|
- prune (remove) the low importance head. |
|
Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650) |
|
which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1 |
|
""" |
|
import argparse |
|
import logging |
|
import os |
|
from datetime import datetime |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader, SequentialSampler, Subset |
|
from torch.utils.data.distributed import DistributedSampler |
|
from tqdm import tqdm |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForSequenceClassification, |
|
AutoTokenizer, |
|
GlueDataset, |
|
default_data_collator, |
|
glue_compute_metrics, |
|
glue_output_modes, |
|
glue_processors, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import is_main_process |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def entropy(p): |
|
"""Compute the entropy of a probability distribution""" |
|
plogp = p * torch.log(p) |
|
plogp[p == 0] = 0 |
|
return -plogp.sum(dim=-1) |
|
|
|
|
|
def print_2d_tensor(tensor): |
|
"""Print a 2D tensor""" |
|
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) |
|
for row in range(len(tensor)): |
|
if tensor.dtype != torch.long: |
|
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data)) |
|
else: |
|
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data)) |
|
|
|
|
|
def compute_heads_importance( |
|
args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False |
|
): |
|
"""This method shows how to compute: |
|
- head attention entropy |
|
- head importance scores according to http://arxiv.org/abs/1905.10650 |
|
""" |
|
|
|
n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads |
|
head_importance = torch.zeros(n_layers, n_heads).to(args.device) |
|
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) |
|
|
|
if head_mask is None: |
|
head_mask = torch.ones(n_layers, n_heads).to(args.device) |
|
|
|
head_mask.requires_grad_(requires_grad=True) |
|
|
|
if actually_pruned: |
|
head_mask = None |
|
|
|
preds = None |
|
labels = None |
|
tot_tokens = 0.0 |
|
|
|
for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): |
|
for k, v in inputs.items(): |
|
inputs[k] = v.to(args.device) |
|
|
|
|
|
outputs = model(**inputs, head_mask=head_mask) |
|
loss, logits, all_attentions = ( |
|
outputs[0], |
|
outputs[1], |
|
outputs[-1], |
|
) |
|
loss.backward() |
|
|
|
if compute_entropy: |
|
for layer, attn in enumerate(all_attentions): |
|
masked_entropy = entropy(attn.detach()) * inputs["attention_mask"].float().unsqueeze(1) |
|
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() |
|
|
|
if compute_importance: |
|
head_importance += head_mask.grad.abs().detach() |
|
|
|
|
|
if preds is None: |
|
preds = logits.detach().cpu().numpy() |
|
labels = inputs["labels"].detach().cpu().numpy() |
|
else: |
|
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) |
|
labels = np.append(labels, inputs["labels"].detach().cpu().numpy(), axis=0) |
|
|
|
tot_tokens += inputs["attention_mask"].float().detach().sum().data |
|
|
|
|
|
attn_entropy /= tot_tokens |
|
head_importance /= tot_tokens |
|
|
|
if not args.dont_normalize_importance_by_layer: |
|
exponent = 2 |
|
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent) |
|
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 |
|
|
|
if not args.dont_normalize_global_importance: |
|
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) |
|
|
|
|
|
np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy()) |
|
np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy()) |
|
|
|
logger.info("Attention entropies") |
|
print_2d_tensor(attn_entropy) |
|
logger.info("Head importance scores") |
|
print_2d_tensor(head_importance) |
|
logger.info("Head ranked by importance scores") |
|
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device) |
|
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange( |
|
head_importance.numel(), device=args.device |
|
) |
|
head_ranks = head_ranks.view_as(head_importance) |
|
print_2d_tensor(head_ranks) |
|
|
|
return attn_entropy, head_importance, preds, labels |
|
|
|
|
|
def mask_heads(args, model, eval_dataloader): |
|
"""This method shows how to mask head (set some heads to zero), to test the effect on the network, |
|
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650) |
|
""" |
|
_, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) |
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) |
|
original_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] |
|
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) |
|
|
|
new_head_mask = torch.ones_like(head_importance) |
|
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount)) |
|
|
|
current_score = original_score |
|
while current_score >= original_score * args.masking_threshold: |
|
head_mask = new_head_mask.clone() |
|
|
|
head_importance[head_mask == 0.0] = float("Inf") |
|
current_heads_to_mask = head_importance.view(-1).sort()[1] |
|
|
|
if len(current_heads_to_mask) <= num_to_mask: |
|
break |
|
|
|
|
|
current_heads_to_mask = current_heads_to_mask[:num_to_mask] |
|
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist())) |
|
new_head_mask = new_head_mask.view(-1) |
|
new_head_mask[current_heads_to_mask] = 0.0 |
|
new_head_mask = new_head_mask.view_as(head_mask) |
|
new_head_mask = new_head_mask.clone().detach() |
|
print_2d_tensor(new_head_mask) |
|
|
|
|
|
_, head_importance, preds, labels = compute_heads_importance( |
|
args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask |
|
) |
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) |
|
current_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] |
|
logger.info( |
|
"Masking: current score: %f, remaining heads %d (%.1f percents)", |
|
current_score, |
|
new_head_mask.sum(), |
|
new_head_mask.sum() / new_head_mask.numel() * 100, |
|
) |
|
|
|
logger.info("Final head mask") |
|
print_2d_tensor(head_mask) |
|
np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy()) |
|
|
|
return head_mask |
|
|
|
|
|
def prune_heads(args, model, eval_dataloader, head_mask): |
|
"""This method shows how to prune head (remove heads weights) based on |
|
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650) |
|
""" |
|
|
|
|
|
before_time = datetime.now() |
|
_, _, preds, labels = compute_heads_importance( |
|
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask |
|
) |
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) |
|
score_masking = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] |
|
original_time = datetime.now() - before_time |
|
|
|
original_num_params = sum(p.numel() for p in model.parameters()) |
|
heads_to_prune = { |
|
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask)) |
|
} |
|
|
|
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() |
|
model.prune_heads(heads_to_prune) |
|
pruned_num_params = sum(p.numel() for p in model.parameters()) |
|
|
|
before_time = datetime.now() |
|
_, _, preds, labels = compute_heads_importance( |
|
args, |
|
model, |
|
eval_dataloader, |
|
compute_entropy=False, |
|
compute_importance=False, |
|
head_mask=None, |
|
actually_pruned=True, |
|
) |
|
preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) |
|
score_pruning = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] |
|
new_time = datetime.now() - before_time |
|
|
|
logger.info( |
|
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", |
|
original_num_params, |
|
pruned_num_params, |
|
pruned_num_params / original_num_params * 100, |
|
) |
|
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning) |
|
logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--data_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.", |
|
) |
|
parser.add_argument( |
|
"--model_name_or_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models", |
|
) |
|
parser.add_argument( |
|
"--task_name", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The name of the task to train selected in the list: " + ", ".join(glue_processors.keys()), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--config_name", |
|
default="", |
|
type=str, |
|
help="Pretrained config name or path if not the same as model_name_or_path", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
default="", |
|
type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name_or_path", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
default=None, |
|
type=str, |
|
help="Where do you want to store the pre-trained models downloaded from huggingface.co", |
|
) |
|
parser.add_argument( |
|
"--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances." |
|
) |
|
parser.add_argument( |
|
"--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory" |
|
) |
|
parser.add_argument( |
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" |
|
) |
|
|
|
parser.add_argument( |
|
"--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers" |
|
) |
|
parser.add_argument( |
|
"--dont_normalize_global_importance", |
|
action="store_true", |
|
help="Don't normalize all importance scores between 0 and 1", |
|
) |
|
|
|
parser.add_argument( |
|
"--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy." |
|
) |
|
parser.add_argument( |
|
"--masking_threshold", |
|
default=0.9, |
|
type=float, |
|
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).", |
|
) |
|
parser.add_argument( |
|
"--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step." |
|
) |
|
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") |
|
|
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=128, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after WordPiece tokenization. \n" |
|
"Sequences longer than this will be truncated, sequences shorter padded." |
|
), |
|
) |
|
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") |
|
|
|
parser.add_argument("--seed", type=int, default=42) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") |
|
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") |
|
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") |
|
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") |
|
args = parser.parse_args() |
|
|
|
if args.server_ip and args.server_port: |
|
|
|
import ptvsd |
|
|
|
print("Waiting for debugger attach") |
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) |
|
ptvsd.wait_for_attach() |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
args.device = torch.device("cuda", args.local_rank) |
|
args.n_gpu = 1 |
|
torch.distributed.init_process_group(backend="nccl") |
|
|
|
|
|
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) |
|
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) |
|
|
|
if is_main_process(args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
set_seed(args.seed) |
|
|
|
|
|
args.task_name = args.task_name.lower() |
|
if args.task_name not in glue_processors: |
|
raise ValueError("Task not found: %s" % (args.task_name)) |
|
processor = glue_processors[args.task_name]() |
|
args.output_mode = glue_output_modes[args.task_name] |
|
label_list = processor.get_labels() |
|
num_labels = len(label_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
args.config_name if args.config_name else args.model_name_or_path, |
|
num_labels=num_labels, |
|
finetuning_task=args.task_name, |
|
output_attentions=True, |
|
cache_dir=args.cache_dir, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
cache_dir=args.cache_dir, |
|
) |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
args.model_name_or_path, |
|
from_tf=bool(".ckpt" in args.model_name_or_path), |
|
config=config, |
|
cache_dir=args.cache_dir, |
|
) |
|
|
|
|
|
model.to(args.device) |
|
if args.local_rank != -1: |
|
model = nn.parallel.DistributedDataParallel( |
|
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True |
|
) |
|
elif args.n_gpu > 1: |
|
model = nn.DataParallel(model) |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
torch.save(args, os.path.join(args.output_dir, "run_args.bin")) |
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
eval_dataset = GlueDataset(args, tokenizer=tokenizer, mode="dev") |
|
if args.data_subset > 0: |
|
eval_dataset = Subset(eval_dataset, list(range(min(args.data_subset, len(eval_dataset))))) |
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader( |
|
eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, collate_fn=default_data_collator |
|
) |
|
|
|
|
|
compute_heads_importance(args, model, eval_dataloader) |
|
|
|
|
|
|
|
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: |
|
head_mask = mask_heads(args, model, eval_dataloader) |
|
prune_heads(args, model, eval_dataloader, head_mask) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|