import os | |
import torch | |
def process_file(file_path): | |
state_dict = torch.load(file_path) | |
filtered_state_dict = {name: param for name, param in state_dict.items() if 'lora' in name or 'audio' in name} | |
print(f"Parameters in file {file_path}:") | |
for name in filtered_state_dict.keys(): | |
print(name) | |
torch.save(filtered_state_dict, file_path[:-4] + '_trainable.bin') | |
print(file_path[:-4] + '_trainable.bin') | |
print('----------------------------------') | |
# Walk through the current directory and its subdirectories | |
count = 0 | |
for dirpath, dirnames, filenames in os.walk('/fs/nexus-projects/brain_project/acl_sk_24/GAMA//llm/alpaca-lora-main/'): | |
for file in filenames: | |
if file == "pytorch_model.bin": | |
cur_target = os.path.join(dirpath, file) | |
if os.path.exists(cur_target[:-4] + '_trainable.bin') == False: | |
print(os.path.join(dirpath, file)) | |
process_file(os.path.join(dirpath, file)) | |
count +=1 | |
print(count) |