|
import importlib |
|
|
|
import torch |
|
import yaml |
|
from omegaconf import OmegaConf |
|
from taming.models.vqgan import VQModel |
|
|
|
|
|
def load_config(config_path, display=False): |
|
config = OmegaConf.load(config_path) |
|
if display: |
|
print(yaml.dump(OmegaConf.to_container(config))) |
|
return config |
|
|
|
|
|
def load_vqgan(device, conf_path=None, ckpt_path=None): |
|
if conf_path is None: |
|
conf_path = "./model_checkpoints/vqgan_only.yaml" |
|
config = load_config(conf_path, display=False) |
|
model = VQModel(**config.model.params) |
|
if ckpt_path is None: |
|
ckpt_path = "./model_checkpoints/vqgan_only.pt" |
|
sd = torch.load(ckpt_path, map_location=device) |
|
if ".ckpt" in ckpt_path: |
|
sd = sd["state_dict"] |
|
model.load_state_dict(sd, strict=True) |
|
model.to(device) |
|
del sd |
|
return model |
|
|
|
|
|
def reconstruct_with_vqgan(x, model): |
|
z, _, [_, _, indices] = model.encode(x) |
|
print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}") |
|
xrec = model.decode(z) |
|
return xrec |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def instantiate_from_config(config): |
|
if "target" not in config: |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", {})) |
|
|
|
|
|
def load_model_from_config(config, sd, gpu=True, eval_mode=True): |
|
model = instantiate_from_config(config) |
|
if sd is not None: |
|
model.load_state_dict(sd) |
|
if gpu: |
|
model.cuda() |
|
if eval_mode: |
|
model.eval() |
|
return {"model": model} |
|
|
|
|
|
def load_model(config, ckpt, gpu, eval_mode): |
|
|
|
if ckpt: |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
global_step = pl_sd["global_step"] |
|
print(f"loaded model from global step {global_step}.") |
|
else: |
|
pl_sd = {"state_dict": None} |
|
global_step = None |
|
model = load_model_from_config(config.model, pl_sd["state_dict"], gpu=gpu, eval_mode=eval_mode)["model"] |
|
return model, global_step |
|
|