|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
|
|
@dataclass |
|
class TrainingArguments: |
|
""" |
|
Configuration for training model. |
|
""" |
|
|
|
model_ckpt: Optional[str] = field( |
|
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."} |
|
) |
|
save_dir: Optional[str] = field( |
|
default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} |
|
) |
|
dataset_name_train: Optional[str] = field( |
|
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."} |
|
) |
|
dataset_name_valid: Optional[str] = field( |
|
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} |
|
) |
|
train_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for training."}) |
|
valid_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for evaluation."}) |
|
weight_decay: Optional[float] = field(default=0.1, metadata={"help": "Value of weight decay."}) |
|
shuffle_buffer: Optional[int] = field( |
|
default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."} |
|
) |
|
learning_rate: Optional[float] = field(default=2e-4, metadata={"help": "Learning rate fo training."}) |
|
lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "Learning rate."}) |
|
num_warmup_steps: Optional[int] = field( |
|
default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."} |
|
) |
|
gradient_accumulation_steps: Optional[int] = field( |
|
default=16, metadata={"help": "Number of gradient accumulation steps."} |
|
) |
|
gradient_checkpointing: Optional[bool] = field( |
|
default=True, metadata={"help": "Use gradient checkpointing to reduce memory footprint."} |
|
) |
|
max_train_steps: Optional[int] = field(default=50000, metadata={"help": "Maximum number of training steps."}) |
|
max_eval_steps: Optional[int] = field( |
|
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} |
|
) |
|
seq_length: Optional[int] = field(default=1024, metadata={"help": "Sequence lengths used for training."}) |
|
seed: Optional[int] = field(default=1, metadata={"help": "Training seed."}) |
|
save_checkpoint_steps: Optional[int] = field( |
|
default=1024, |
|
metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."}, |
|
) |
|
resume_from_checkpoint: Optional[str] = field( |
|
default=None, metadata={"help": "States path if the training should continue from a checkpoint folder."} |
|
) |
|
tokenized: Optional[bool] = field(default=False, metadata={"help": "If True the data is pretokenized."}) |
|
|
|
|
|
@dataclass |
|
class EvaluationArguments: |
|
""" |
|
Configuration for evaluating model. |
|
""" |
|
|
|
model_ckpt: Optional[str] = field( |
|
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} |
|
) |
|
dataset_name: Optional[str] = field( |
|
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."} |
|
) |
|
batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size used for evaluation."}) |
|
max_eval_steps: Optional[int] = field( |
|
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} |
|
) |
|
seq_length: Optional[int] = field(default=1024, metadata={"help": "Length of sequences to be evaluated."}) |
|
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."}) |
|
|
|
|
|
@dataclass |
|
class HumanEvalArguments: |
|
""" |
|
Configuration for running evaluation on HumanEval dataset. |
|
""" |
|
|
|
model_ckpt: Optional[str] = field( |
|
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."} |
|
) |
|
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."}) |
|
num_tasks: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."}, |
|
) |
|
do_sample: Optional[bool] = field( |
|
default=True, metadata={"help": "Sample from the language model's output distribution."} |
|
) |
|
temperature: Optional[float] = field(default=0.2, metadata={"help": "Sampling temperature used for generation."}) |
|
max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of newly generated tokens."}) |
|
top_k: Optional[int] = field(default=0, metadata={"help": "Top-k parameter used for generation."}) |
|
top_p: Optional[float] = field(default=0.95, metadata={"help": "Top-p parameter used for nucleus sampling."}) |
|
batch_size: Optional[int] = field(default=10, metadata={"help": "Number of generations to run in parallel."}) |
|
n_samples: Optional[int] = field( |
|
default=200, metadata={"help": "Number of completions to generate for each sample."} |
|
) |
|
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."}) |
|
output_file: Optional[str] = field( |
|
default="eval_results.json", metadata={"help": "Random seed used for evaluation."} |
|
) |
|
HF_ALLOW_CODE_EVAL: Optional[str] = field( |
|
default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"} |
|
) |
|
device_int: Optional[int] = field( |
|
default=-1, |
|
metadata={ |
|
"help": ( |
|
"Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" |
|
" number corresponds to which GPU device id to run on." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class PreprocessingArguments: |
|
""" |
|
Configuration for preprocessing data. |
|
""" |
|
|
|
num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." |
|
}, |
|
) |
|
dataset_name: Optional[str] = field( |
|
default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."} |
|
) |
|
output_dir: Optional[str] = field( |
|
default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."} |
|
) |
|
samples_per_file: Optional[int] = field( |
|
default=100_000, metadata={"help": "Number of files to save per JSON output file."} |
|
) |
|
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."}) |
|
line_max: Optional[float] = field( |
|
default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."} |
|
) |
|
line_mean: Optional[float] = field( |
|
default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} |
|
) |
|
alpha_frac: Optional[float] = field( |
|
default=0.25, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} |
|
) |
|
min_token_ratio: Optional[float] = field( |
|
default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} |
|
) |
|
filter_proba: Optional[float] = field( |
|
default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."} |
|
) |
|
tokenizer: Optional[str] = field( |
|
default="codeparrot/codeparrot", |
|
metadata={"help": "Name or path to the tokenizer."}, |
|
) |
|
near_deduplication: Optional[bool] = field( |
|
default=False, metadata={"help": "If True, near-duplicate samples are removed."} |
|
) |
|
jaccard_threshold: Optional[float] = field( |
|
default=0.85, metadata={"help": "Jaccard threshold for near-duplicate samples."} |
|
) |
|
|
|
|
|
@dataclass |
|
class TokenizerTrainingArguments: |
|
""" |
|
Configuration for tokenizer training. |
|
""" |
|
|
|
base_tokenizer: Optional[str] = field( |
|
default="gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."} |
|
) |
|
dataset_name: Optional[str] = field( |
|
default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."} |
|
) |
|
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."}) |
|
vocab_size: Optional[int] = field(default=200_000, metadata={"help": "Number of examples to train tokenizer on."}) |
|
n_examples: Optional[int] = field( |
|
default=32768, metadata={"help": "Number of examples to train the tokenizer on."} |
|
) |
|
tokenizer_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of new tokenizer."}) |
|
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."}) |
|
|
|
|
|
@dataclass |
|
class PretokenizationArguments: |
|
""" |
|
Configuration for data pretokenization. |
|
""" |
|
|
|
tokenizer_dir: Optional[str] = field( |
|
default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."} |
|
) |
|
dataset_name: Optional[str] = field( |
|
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."} |
|
) |
|
tokenized_data_repo: Optional[str] = field( |
|
default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."} |
|
) |
|
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."}) |
|
|
|
|
|
@dataclass |
|
class InitializationArguments: |
|
""" |
|
Configuration for initializing new model. |
|
""" |
|
|
|
config_name: Optional[str] = field( |
|
default="gpt2-large", metadata={"help": "Configuration to use for model initialization."} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."} |
|
) |
|
model_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of the created model."}) |
|
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."}) |
|
|