|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
from transformers import CTRLConfig, is_torch_available |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
|
|
from ...generation.test_utils import GenerationTesterMixin |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, |
|
CTRLForSequenceClassification, |
|
CTRLLMHeadModel, |
|
CTRLModel, |
|
) |
|
|
|
|
|
class CTRLModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=14, |
|
seq_length=7, |
|
is_training=True, |
|
use_token_type_ids=True, |
|
use_input_mask=True, |
|
use_labels=True, |
|
use_mc_token_ids=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
num_choices=4, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.use_mc_token_ids = use_mc_token_ids |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.num_labels = num_labels |
|
self.num_choices = num_choices |
|
self.scope = scope |
|
self.pad_token_id = self.vocab_size - 1 |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
mc_token_ids = None |
|
if self.use_mc_token_ids: |
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) |
|
|
|
sequence_labels = None |
|
token_labels = None |
|
choice_labels = None |
|
if self.use_labels: |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) |
|
choice_labels = ids_tensor([self.batch_size], self.num_choices) |
|
|
|
config = self.get_config() |
|
|
|
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) |
|
|
|
def get_config(self): |
|
return CTRLConfig( |
|
vocab_size=self.vocab_size, |
|
n_embd=self.hidden_size, |
|
n_layer=self.num_hidden_layers, |
|
n_head=self.num_attention_heads, |
|
|
|
|
|
|
|
|
|
n_positions=self.max_position_embeddings, |
|
|
|
|
|
pad_token_id=self.pad_token_id, |
|
) |
|
|
|
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = CTRLModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) |
|
model(input_ids, token_type_ids=token_type_ids) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(len(result.past_key_values), config.n_layer) |
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): |
|
model = CTRLLMHeadModel(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) |
|
self.parent.assertEqual(result.loss.shape, ()) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
|
|
( |
|
config, |
|
input_ids, |
|
input_mask, |
|
head_mask, |
|
token_type_ids, |
|
mc_token_ids, |
|
sequence_labels, |
|
token_labels, |
|
choice_labels, |
|
) = config_and_inputs |
|
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} |
|
|
|
return config, inputs_dict |
|
|
|
def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args): |
|
config.num_labels = self.num_labels |
|
model = CTRLForSequenceClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) |
|
|
|
|
|
@require_torch |
|
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () |
|
all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": CTRLModel, |
|
"text-classification": CTRLForSequenceClassification, |
|
"text-generation": CTRLLMHeadModel, |
|
"zero-shot": CTRLForSequenceClassification, |
|
} |
|
if is_torch_available() |
|
else {} |
|
) |
|
test_pruning = True |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
|
|
|
|
def is_pipeline_test_to_skip( |
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name |
|
): |
|
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": |
|
|
|
|
|
|
|
return True |
|
|
|
return False |
|
|
|
def setUp(self): |
|
self.model_tester = CTRLModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_ctrl_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_ctrl_model(*config_and_inputs) |
|
|
|
def test_ctrl_lm_head_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = CTRLModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_torch |
|
class CTRLModelLanguageGenerationTest(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@slow |
|
def test_lm_generate_ctrl(self): |
|
model = CTRLLMHeadModel.from_pretrained("ctrl") |
|
model.to(torch_device) |
|
input_ids = torch.tensor( |
|
[[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device |
|
) |
|
expected_output_ids = [ |
|
11859, |
|
0, |
|
1611, |
|
8, |
|
5, |
|
150, |
|
26449, |
|
2, |
|
19, |
|
348, |
|
469, |
|
3, |
|
2595, |
|
48, |
|
20740, |
|
246533, |
|
246533, |
|
19, |
|
30, |
|
5, |
|
] |
|
|
|
output_ids = model.generate(input_ids, do_sample=False) |
|
self.assertListEqual(output_ids[0].tolist(), expected_output_ids) |
|
|