|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch CLAP model. """ |
|
|
|
|
|
import inspect |
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
from datasets import load_dataset |
|
|
|
from transformers import ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
from transformers.utils import is_torch_available |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ( |
|
ModelTesterMixin, |
|
_config_zero_init, |
|
floats_tensor, |
|
ids_tensor, |
|
random_attention_mask, |
|
) |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch import nn |
|
|
|
from transformers import ( |
|
ClapAudioModel, |
|
ClapAudioModelWithProjection, |
|
ClapModel, |
|
ClapTextModel, |
|
ClapTextModelWithProjection, |
|
) |
|
from transformers.models.clap.modeling_clap import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
class ClapAudioModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=12, |
|
image_size=60, |
|
num_mel_bins=16, |
|
window_size=4, |
|
spec_size=64, |
|
patch_size=2, |
|
patch_stride=2, |
|
seq_length=16, |
|
freq_ratio=2, |
|
num_channels=3, |
|
is_training=True, |
|
hidden_size=256, |
|
patch_embeds_hidden_size=32, |
|
projection_dim=32, |
|
num_hidden_layers=4, |
|
num_heads=[2, 2, 2, 2], |
|
intermediate_size=37, |
|
dropout=0.1, |
|
attention_dropout=0.1, |
|
initializer_range=0.02, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.num_mel_bins = num_mel_bins |
|
self.window_size = window_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.is_training = is_training |
|
self.hidden_size = hidden_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_heads = num_heads |
|
self.num_attention_heads = num_heads[0] |
|
self.seq_length = seq_length |
|
self.spec_size = spec_size |
|
self.freq_ratio = freq_ratio |
|
self.patch_stride = patch_stride |
|
self.patch_embeds_hidden_size = patch_embeds_hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.initializer_range = initializer_range |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
input_features = floats_tensor([self.batch_size, 1, self.hidden_size, self.num_mel_bins]) |
|
config = self.get_config() |
|
|
|
return config, input_features |
|
|
|
def get_config(self): |
|
return ClapAudioConfig( |
|
image_size=self.image_size, |
|
patch_size=self.patch_size, |
|
num_mel_bins=self.num_mel_bins, |
|
window_size=self.window_size, |
|
num_channels=self.num_channels, |
|
hidden_size=self.hidden_size, |
|
patch_stride=self.patch_stride, |
|
projection_dim=self.projection_dim, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_heads, |
|
intermediate_size=self.intermediate_size, |
|
dropout=self.dropout, |
|
attention_dropout=self.attention_dropout, |
|
initializer_range=self.initializer_range, |
|
spec_size=self.spec_size, |
|
freq_ratio=self.freq_ratio, |
|
patch_embeds_hidden_size=self.patch_embeds_hidden_size, |
|
) |
|
|
|
def create_and_check_model(self, config, input_features): |
|
model = ClapAudioModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(input_features) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def create_and_check_model_with_projection(self, config, input_features): |
|
model = ClapAudioModelWithProjection(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(input_features) |
|
self.parent.assertEqual(result.audio_embeds.shape, (self.batch_size, self.projection_dim)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_features = config_and_inputs |
|
inputs_dict = {"input_features": input_features} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class ClapAudioModelTest(ModelTesterMixin, unittest.TestCase): |
|
""" |
|
Here we also overwrite some of the tests of test_modeling_common.py, as CLAP does not use input_ids, inputs_embeds, |
|
attention_mask and seq_length. |
|
""" |
|
|
|
all_model_classes = (ClapAudioModel, ClapAudioModelWithProjection) if is_torch_available() else () |
|
fx_compatible = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = ClapAudioModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=ClapAudioConfig, has_text_modality=False, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
@unittest.skip(reason="ClapAudioModel does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
def test_model_common_attributes(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) |
|
x = model.get_output_embeddings() |
|
self.assertTrue(x is None or isinstance(x, nn.Linear)) |
|
|
|
def test_hidden_states_output(self): |
|
def check_hidden_states_output(inputs_dict, config, model_class): |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
hidden_states = outputs.hidden_states |
|
|
|
expected_num_layers = getattr( |
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 |
|
) |
|
self.assertEqual(len(hidden_states), expected_num_layers) |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[self.model_tester.patch_embeds_hidden_size, self.model_tester.patch_embeds_hidden_size], |
|
) |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass") |
|
def test_retain_grad_hidden_states_attentions(self): |
|
pass |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["input_features"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_model_with_projection(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model_with_projection(*config_and_inputs) |
|
|
|
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass") |
|
def test_training(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass") |
|
def test_training_gradient_checkpointing(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_from_base(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_to_base(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = ClapAudioModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
@slow |
|
def test_model_with_projection_from_pretrained(self): |
|
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = ClapAudioModelWithProjection.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertTrue(hasattr(model, "audio_projection")) |
|
|
|
|
|
class ClapTextModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=12, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_labels=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
projection_dim=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
dropout=0.1, |
|
attention_dropout=0.1, |
|
max_position_embeddings=512, |
|
initializer_range=0.02, |
|
scope=None, |
|
projection_hidden_act="relu", |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.projection_dim = projection_dim |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.scope = scope |
|
self.projection_hidden_act = projection_hidden_act |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
if input_mask is not None: |
|
batch_size, seq_length = input_mask.shape |
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) |
|
for batch_idx, start_index in enumerate(rnd_start_indices): |
|
input_mask[batch_idx, :start_index] = 1 |
|
input_mask[batch_idx, start_index:] = 0 |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, input_mask |
|
|
|
def get_config(self): |
|
return ClapTextConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
projection_dim=self.projection_dim, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
dropout=self.dropout, |
|
attention_dropout=self.attention_dropout, |
|
max_position_embeddings=self.max_position_embeddings, |
|
initializer_range=self.initializer_range, |
|
projection_hidden_act=self.projection_hidden_act, |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, input_mask): |
|
model = ClapTextModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, attention_mask=input_mask) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def create_and_check_model_with_projection(self, config, input_ids, input_mask): |
|
model = ClapTextModelWithProjection(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, attention_mask=input_mask) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, input_mask = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class ClapTextModelTest(ModelTesterMixin, unittest.TestCase): |
|
all_model_classes = (ClapTextModel, ClapTextModelWithProjection) if is_torch_available() else () |
|
fx_compatible = False |
|
test_pruning = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = ClapTextModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=ClapTextConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_model_with_projection(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model_with_projection(*config_and_inputs) |
|
|
|
@unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass") |
|
def test_training(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass") |
|
def test_training_gradient_checkpointing(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapTextModel does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_from_base(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_to_base(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = ClapTextModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
@slow |
|
def test_model_with_projection_from_pretrained(self): |
|
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = ClapTextModelWithProjection.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
self.assertTrue(hasattr(model, "text_projection")) |
|
|
|
|
|
class ClapModelTester: |
|
def __init__(self, parent, text_kwargs=None, audio_kwargs=None, is_training=True): |
|
if text_kwargs is None: |
|
text_kwargs = {} |
|
if audio_kwargs is None: |
|
audio_kwargs = {} |
|
|
|
self.parent = parent |
|
self.text_model_tester = ClapTextModelTester(parent, **text_kwargs) |
|
self.audio_model_tester = ClapAudioModelTester(parent, **audio_kwargs) |
|
self.is_training = is_training |
|
|
|
def prepare_config_and_inputs(self): |
|
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() |
|
_, input_features = self.audio_model_tester.prepare_config_and_inputs() |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, attention_mask, input_features |
|
|
|
def get_config(self): |
|
return ClapConfig.from_text_audio_configs( |
|
self.text_model_tester.get_config(), self.audio_model_tester.get_config(), projection_dim=64 |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, attention_mask, input_features): |
|
model = ClapModel(config).to(torch_device).eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, input_features, attention_mask) |
|
self.parent.assertEqual( |
|
result.logits_per_audio.shape, (self.audio_model_tester.batch_size, self.text_model_tester.batch_size) |
|
) |
|
self.parent.assertEqual( |
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.audio_model_tester.batch_size) |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, attention_mask, input_features = config_and_inputs |
|
inputs_dict = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"input_features": input_features, |
|
"return_loss": True, |
|
} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class ClapModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (ClapModel,) if is_torch_available() else () |
|
pipeline_model_mapping = {"feature-extraction": ClapModel} if is_torch_available() else {} |
|
fx_compatible = False |
|
test_head_masking = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_attention_outputs = False |
|
|
|
def setUp(self): |
|
self.model_tester = ClapModelTester(self) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests") |
|
def test_hidden_states_output(self): |
|
pass |
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests") |
|
def test_retain_grad_hidden_states_attentions(self): |
|
pass |
|
|
|
@unittest.skip(reason="ClapModel does not have input/output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
|
|
if name == "logit_scale": |
|
self.assertAlmostEqual( |
|
param.data.item(), |
|
np.log(1 / 0.07), |
|
delta=1e-3, |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
else: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict): |
|
if not self.test_torchscript: |
|
return |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.torchscript = True |
|
configs_no_init.return_dict = False |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
try: |
|
input_ids = inputs_dict["input_ids"] |
|
input_features = inputs_dict["input_features"] |
|
traced_model = torch.jit.trace(model, (input_ids, input_features)) |
|
except RuntimeError: |
|
self.fail("Couldn't trace module.") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") |
|
|
|
try: |
|
torch.jit.save(traced_model, pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't save module.") |
|
|
|
try: |
|
loaded_model = torch.jit.load(pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't load module.") |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
loaded_model.to(torch_device) |
|
loaded_model.eval() |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_model_state_dict = loaded_model.state_dict() |
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) |
|
|
|
models_equal = True |
|
for layer_name, p1 in model_state_dict.items(): |
|
p2 = loaded_model_state_dict[layer_name] |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
def test_load_audio_text_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
audio_config = ClapAudioConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.audio_config.to_dict(), audio_config.to_dict()) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
text_config = ClapTextConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = ClapModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@slow |
|
@require_torch |
|
class ClapModelIntegrationTest(unittest.TestCase): |
|
paddings = ["repeatpad", "repeat", "pad"] |
|
|
|
def test_integration_unfused(self): |
|
EXPECTED_MEANS_UNFUSED = { |
|
"repeatpad": 0.0024, |
|
"pad": 0.0020, |
|
"repeat": 0.0023, |
|
} |
|
|
|
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
audio_sample = librispeech_dummy[-1] |
|
|
|
model_id = "laion/clap-htsat-unfused" |
|
|
|
model = ClapModel.from_pretrained(model_id).to(torch_device) |
|
processor = ClapProcessor.from_pretrained(model_id) |
|
|
|
for padding in self.paddings: |
|
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding).to( |
|
torch_device |
|
) |
|
|
|
audio_embed = model.get_audio_features(**inputs) |
|
expected_mean = EXPECTED_MEANS_UNFUSED[padding] |
|
|
|
self.assertTrue( |
|
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) |
|
) |
|
|
|
def test_integration_fused(self): |
|
EXPECTED_MEANS_FUSED = { |
|
"repeatpad": 0.00069, |
|
"repeat": 0.00196, |
|
"pad": -0.000379, |
|
} |
|
|
|
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
audio_sample = librispeech_dummy[-1] |
|
|
|
model_id = "laion/clap-htsat-fused" |
|
|
|
model = ClapModel.from_pretrained(model_id).to(torch_device) |
|
processor = ClapProcessor.from_pretrained(model_id) |
|
|
|
for padding in self.paddings: |
|
inputs = processor( |
|
audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding, truncation="fusion" |
|
).to(torch_device) |
|
|
|
audio_embed = model.get_audio_features(**inputs) |
|
expected_mean = EXPECTED_MEANS_FUSED[padding] |
|
|
|
self.assertTrue( |
|
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) |
|
) |
|
|
|
def test_batched_fused(self): |
|
EXPECTED_MEANS_FUSED = { |
|
"repeatpad": 0.0010, |
|
"repeat": 0.0020, |
|
"pad": 0.0006, |
|
} |
|
|
|
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] |
|
|
|
model_id = "laion/clap-htsat-fused" |
|
|
|
model = ClapModel.from_pretrained(model_id).to(torch_device) |
|
processor = ClapProcessor.from_pretrained(model_id) |
|
|
|
for padding in self.paddings: |
|
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding, truncation="fusion").to( |
|
torch_device |
|
) |
|
|
|
audio_embed = model.get_audio_features(**inputs) |
|
expected_mean = EXPECTED_MEANS_FUSED[padding] |
|
|
|
self.assertTrue( |
|
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) |
|
) |
|
|
|
def test_batched_unfused(self): |
|
EXPECTED_MEANS_FUSED = { |
|
"repeatpad": 0.0016, |
|
"repeat": 0.0019, |
|
"pad": 0.0019, |
|
} |
|
|
|
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") |
|
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] |
|
|
|
model_id = "laion/clap-htsat-unfused" |
|
|
|
model = ClapModel.from_pretrained(model_id).to(torch_device) |
|
processor = ClapProcessor.from_pretrained(model_id) |
|
|
|
for padding in self.paddings: |
|
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding).to(torch_device) |
|
|
|
audio_embed = model.get_audio_features(**inputs) |
|
expected_mean = EXPECTED_MEANS_FUSED[padding] |
|
|
|
self.assertTrue( |
|
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) |
|
) |
|
|