|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import unittest |
|
|
|
from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding |
|
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES |
|
from transformers.testing_utils import require_tokenizers, require_torch |
|
from transformers.utils import cached_property |
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors |
|
|
|
|
|
@require_tokenizers |
|
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase): |
|
tokenizer_class = BartTokenizer |
|
rust_tokenizer_class = BartTokenizerFast |
|
test_rust_tokenizer = True |
|
from_pretrained_filter = filter_roberta_detectors |
|
|
|
|
|
def setUp(self): |
|
super().setUp() |
|
vocab = [ |
|
"l", |
|
"o", |
|
"w", |
|
"e", |
|
"r", |
|
"s", |
|
"t", |
|
"i", |
|
"d", |
|
"n", |
|
"\u0120", |
|
"\u0120l", |
|
"\u0120n", |
|
"\u0120lo", |
|
"\u0120low", |
|
"er", |
|
"\u0120lowest", |
|
"\u0120newer", |
|
"\u0120wider", |
|
"<unk>", |
|
] |
|
vocab_tokens = dict(zip(vocab, range(len(vocab)))) |
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] |
|
self.special_tokens_map = {"unk_token": "<unk>"} |
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) |
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) |
|
with open(self.vocab_file, "w", encoding="utf-8") as fp: |
|
fp.write(json.dumps(vocab_tokens) + "\n") |
|
with open(self.merges_file, "w", encoding="utf-8") as fp: |
|
fp.write("\n".join(merges)) |
|
|
|
def get_tokenizer(self, **kwargs): |
|
kwargs.update(self.special_tokens_map) |
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_rust_tokenizer(self, **kwargs): |
|
kwargs.update(self.special_tokens_map) |
|
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) |
|
|
|
def get_input_output_texts(self, tokenizer): |
|
return "lower newer", "lower newer" |
|
|
|
@cached_property |
|
def default_tokenizer(self): |
|
return BartTokenizer.from_pretrained("facebook/bart-large") |
|
|
|
@cached_property |
|
def default_tokenizer_fast(self): |
|
return BartTokenizerFast.from_pretrained("facebook/bart-large") |
|
|
|
@require_torch |
|
def test_prepare_batch(self): |
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] |
|
expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] |
|
|
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: |
|
batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt") |
|
self.assertIsInstance(batch, BatchEncoding) |
|
|
|
self.assertEqual((2, 9), batch.input_ids.shape) |
|
self.assertEqual((2, 9), batch.attention_mask.shape) |
|
result = batch.input_ids.tolist()[0] |
|
self.assertListEqual(expected_src_tokens, result) |
|
|
|
|
|
@require_torch |
|
def test_prepare_batch_empty_target_text(self): |
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] |
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: |
|
batch = tokenizer(src_text, padding=True, return_tensors="pt") |
|
|
|
self.assertIn("input_ids", batch) |
|
self.assertIn("attention_mask", batch) |
|
self.assertNotIn("labels", batch) |
|
self.assertNotIn("decoder_attention_mask", batch) |
|
|
|
@require_torch |
|
def test_tokenizer_as_target_length(self): |
|
tgt_text = [ |
|
"Summary of the text.", |
|
"Another summary.", |
|
] |
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: |
|
targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt") |
|
self.assertEqual(32, targets["input_ids"].shape[1]) |
|
|
|
@require_torch |
|
def test_prepare_batch_not_longer_than_maxlen(self): |
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: |
|
batch = tokenizer( |
|
["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt" |
|
) |
|
self.assertIsInstance(batch, BatchEncoding) |
|
self.assertEqual(batch.input_ids.shape, (2, 1024)) |
|
|
|
@require_torch |
|
def test_special_tokens(self): |
|
src_text = ["A long paragraph for summarization."] |
|
tgt_text = [ |
|
"Summary of the text.", |
|
] |
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: |
|
inputs = tokenizer(src_text, return_tensors="pt") |
|
targets = tokenizer(text_target=tgt_text, return_tensors="pt") |
|
input_ids = inputs["input_ids"] |
|
labels = targets["input_ids"] |
|
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) |
|
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) |
|
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) |
|
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) |
|
|
|
def test_pretokenized_inputs(self): |
|
pass |
|
|
|
def test_embeded_special_tokens(self): |
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: |
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): |
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) |
|
sentence = "A, <mask> AllenNLP sentence." |
|
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) |
|
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) |
|
|
|
|
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) |
|
|
|
|
|
self.assertEqual( |
|
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), |
|
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), |
|
) |
|
|
|
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) |
|
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) |
|
|
|
|
|
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) |
|
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) |
|
|
|
self.assertSequenceEqual( |
|
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] |
|
) |
|
self.assertSequenceEqual( |
|
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] |
|
) |
|
|