|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch ALIGN model. """ |
|
|
|
|
|
import inspect |
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import requests |
|
|
|
from transformers import AlignConfig, AlignProcessor, AlignTextConfig, AlignVisionConfig |
|
from transformers.testing_utils import ( |
|
is_flax_available, |
|
require_torch, |
|
require_vision, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ( |
|
ModelTesterMixin, |
|
_config_zero_init, |
|
floats_tensor, |
|
ids_tensor, |
|
random_attention_mask, |
|
) |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
AlignModel, |
|
AlignTextModel, |
|
AlignVisionModel, |
|
) |
|
from transformers.models.align.modeling_align import ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
if is_flax_available(): |
|
pass |
|
|
|
|
|
class AlignVisionModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=12, |
|
image_size=32, |
|
num_channels=3, |
|
kernel_sizes=[3, 3, 5], |
|
in_channels=[32, 16, 24], |
|
out_channels=[16, 24, 30], |
|
hidden_dim=64, |
|
strides=[1, 1, 2], |
|
num_block_repeats=[1, 1, 2], |
|
expand_ratios=[1, 6, 6], |
|
is_training=True, |
|
hidden_act="gelu", |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.num_channels = num_channels |
|
self.kernel_sizes = kernel_sizes |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_dim = hidden_dim |
|
self.strides = strides |
|
self.num_block_repeats = num_block_repeats |
|
self.expand_ratios = expand_ratios |
|
self.is_training = is_training |
|
self.hidden_act = hidden_act |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
config = self.get_config() |
|
|
|
return config, pixel_values |
|
|
|
def get_config(self): |
|
return AlignVisionConfig( |
|
num_channels=self.num_channels, |
|
kernel_sizes=self.kernel_sizes, |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channels, |
|
hidden_dim=self.hidden_dim, |
|
strides=self.strides, |
|
num_block_repeats=self.num_block_repeats, |
|
expand_ratios=self.expand_ratios, |
|
hidden_act=self.hidden_act, |
|
) |
|
|
|
def create_and_check_model(self, config, pixel_values): |
|
model = AlignVisionModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(pixel_values) |
|
|
|
patch_size = self.image_size // 4 |
|
self.parent.assertEqual( |
|
result.last_hidden_state.shape, (self.batch_size, config.hidden_dim, patch_size, patch_size) |
|
) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, config.hidden_dim)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, pixel_values = config_and_inputs |
|
inputs_dict = {"pixel_values": pixel_values} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class AlignVisionModelTest(ModelTesterMixin, unittest.TestCase): |
|
""" |
|
Here we also overwrite some of the tests of test_modeling_common.py, as ALIGN does not use input_ids, inputs_embeds, |
|
attention_mask and seq_length. |
|
""" |
|
|
|
all_model_classes = (AlignVisionModel,) if is_torch_available() else () |
|
fx_compatible = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
has_attentions = False |
|
|
|
def setUp(self): |
|
self.model_tester = AlignVisionModelTester(self) |
|
self.config_tester = ConfigTester( |
|
self, config_class=AlignVisionConfig, has_text_modality=False, hidden_size=37 |
|
) |
|
|
|
def test_config(self): |
|
self.create_and_test_config_common_properties() |
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.create_and_test_config_with_num_labels() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
self.config_tester.check_config_arguments_init() |
|
|
|
def create_and_test_config_common_properties(self): |
|
return |
|
|
|
@unittest.skip(reason="AlignVisionModel does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="AlignVisionModel does not support input and output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_hidden_states_output(self): |
|
def check_hidden_states_output(inputs_dict, config, model_class): |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) |
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states |
|
num_blocks = sum(config.num_block_repeats) * 4 |
|
self.assertEqual(len(hidden_states), num_blocks) |
|
|
|
self.assertListEqual( |
|
list(hidden_states[0].shape[-2:]), |
|
[self.model_tester.image_size // 2, self.model_tester.image_size // 2], |
|
) |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
inputs_dict["output_hidden_states"] = True |
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
|
|
del inputs_dict["output_hidden_states"] |
|
config.output_hidden_states = True |
|
|
|
check_hidden_states_output(inputs_dict, config, model_class) |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def test_training_gradient_checkpointing(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = AlignVisionModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
class AlignTextModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=12, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
use_token_type_ids=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=16, |
|
type_sequence_label_size=2, |
|
initializer_range=0.02, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.use_token_type_ids = use_token_type_ids |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
token_type_ids = None |
|
if self.use_token_type_ids: |
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, token_type_ids, input_mask |
|
|
|
def get_config(self): |
|
return AlignTextConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
type_vocab_size=self.type_vocab_size, |
|
is_decoder=False, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, token_type_ids, input_mask): |
|
model = AlignTextModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) |
|
result = model(input_ids, token_type_ids=token_type_ids) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
( |
|
config, |
|
input_ids, |
|
token_type_ids, |
|
input_mask, |
|
) = config_and_inputs |
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class AlignTextModelTest(ModelTesterMixin, unittest.TestCase): |
|
all_model_classes = (AlignTextModel,) if is_torch_available() else () |
|
fx_compatible = False |
|
test_pruning = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = AlignTextModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=AlignTextConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_training(self): |
|
pass |
|
|
|
def test_training_gradient_checkpointing(self): |
|
pass |
|
|
|
@unittest.skip(reason="ALIGN does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="AlignTextModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_from_base(self): |
|
pass |
|
|
|
@unittest.skip(reason="AlignTextModel has no base class and is not available in MODEL_MAPPING") |
|
def test_save_load_fast_init_to_base(self): |
|
pass |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = AlignTextModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
class AlignModelTester: |
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): |
|
if text_kwargs is None: |
|
text_kwargs = {} |
|
if vision_kwargs is None: |
|
vision_kwargs = {} |
|
|
|
self.parent = parent |
|
self.text_model_tester = AlignTextModelTester(parent, **text_kwargs) |
|
self.vision_model_tester = AlignVisionModelTester(parent, **vision_kwargs) |
|
self.is_training = is_training |
|
|
|
def prepare_config_and_inputs(self): |
|
test_config, input_ids, token_type_ids, input_mask = self.text_model_tester.prepare_config_and_inputs() |
|
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() |
|
|
|
config = self.get_config() |
|
|
|
return config, input_ids, token_type_ids, input_mask, pixel_values |
|
|
|
def get_config(self): |
|
return AlignConfig.from_text_vision_configs( |
|
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 |
|
) |
|
|
|
def create_and_check_model(self, config, input_ids, token_type_ids, attention_mask, pixel_values): |
|
model = AlignModel(config).to(torch_device).eval() |
|
with torch.no_grad(): |
|
result = model(input_ids, pixel_values, attention_mask, token_type_ids) |
|
self.parent.assertEqual( |
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) |
|
) |
|
self.parent.assertEqual( |
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
config, input_ids, token_type_ids, input_mask, pixel_values = config_and_inputs |
|
inputs_dict = { |
|
"input_ids": input_ids, |
|
"token_type_ids": token_type_ids, |
|
"attention_mask": input_mask, |
|
"pixel_values": pixel_values, |
|
"return_loss": True, |
|
} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class AlignModelTest(ModelTesterMixin, unittest.TestCase): |
|
all_model_classes = (AlignModel,) if is_torch_available() else () |
|
fx_compatible = False |
|
test_head_masking = False |
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_attention_outputs = False |
|
|
|
def setUp(self): |
|
self.model_tester = AlignModelTester(self) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests") |
|
def test_hidden_states_output(self): |
|
pass |
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests") |
|
def test_retain_grad_hidden_states_attentions(self): |
|
pass |
|
|
|
@unittest.skip(reason="AlignModel does not have input/output embeddings") |
|
def test_model_common_attributes(self): |
|
pass |
|
|
|
|
|
def test_initialization(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
configs_no_init = _config_zero_init(config) |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
|
|
if name == "temperature": |
|
self.assertAlmostEqual( |
|
param.data.item(), |
|
1.0, |
|
delta=1e-3, |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
elif name == "text_projection.weight": |
|
self.assertTrue( |
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
else: |
|
self.assertIn( |
|
((param.data.mean() * 1e9).round() / 1e9).item(), |
|
[0.0, 1.0], |
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized", |
|
) |
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict): |
|
if not self.test_torchscript: |
|
return |
|
|
|
configs_no_init = _config_zero_init(config) |
|
configs_no_init.torchscript = True |
|
configs_no_init.return_dict = False |
|
for model_class in self.all_model_classes: |
|
model = model_class(config=configs_no_init) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
try: |
|
input_ids = inputs_dict["input_ids"] |
|
pixel_values = inputs_dict["pixel_values"] |
|
traced_model = torch.jit.trace(model, (input_ids, pixel_values)) |
|
except RuntimeError: |
|
self.fail("Couldn't trace module.") |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") |
|
|
|
try: |
|
torch.jit.save(traced_model, pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't save module.") |
|
|
|
try: |
|
loaded_model = torch.jit.load(pt_file_name) |
|
except Exception: |
|
self.fail("Couldn't load module.") |
|
|
|
model.to(torch_device) |
|
model.eval() |
|
|
|
loaded_model.to(torch_device) |
|
loaded_model.eval() |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_model_state_dict = loaded_model.state_dict() |
|
|
|
non_persistent_buffers = {} |
|
for key in loaded_model_state_dict.keys(): |
|
if key not in model_state_dict.keys(): |
|
non_persistent_buffers[key] = loaded_model_state_dict[key] |
|
|
|
loaded_model_state_dict = { |
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers |
|
} |
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) |
|
|
|
models_equal = True |
|
for layer_name, p1 in model_state_dict.items(): |
|
p2 = loaded_model_state_dict[layer_name] |
|
if p1.data.ne(p2.data).sum() > 0: |
|
models_equal = False |
|
|
|
self.assertTrue(models_equal) |
|
|
|
def test_load_vision_text_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
vision_config = AlignVisionConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name: |
|
config.save_pretrained(tmp_dir_name) |
|
text_config = AlignTextConfig.from_pretrained(tmp_dir_name) |
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = AlignModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
|
|
def prepare_img(): |
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
im = Image.open(requests.get(url, stream=True).raw) |
|
return im |
|
|
|
|
|
@require_vision |
|
@require_torch |
|
class AlignModelIntegrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference(self): |
|
model_name = "kakaobrain/align-base" |
|
model = AlignModel.from_pretrained(model_name).to(torch_device) |
|
processor = AlignProcessor.from_pretrained(model_name) |
|
|
|
image = prepare_img() |
|
texts = ["a photo of a cat", "a photo of a dog"] |
|
inputs = processor(text=texts, images=image, return_tensors="pt").to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
self.assertEqual( |
|
outputs.logits_per_image.shape, |
|
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), |
|
) |
|
self.assertEqual( |
|
outputs.logits_per_text.shape, |
|
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), |
|
) |
|
expected_logits = torch.tensor([[9.7093, 3.4679]], device=torch_device) |
|
self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3)) |
|
|