|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
import transformers |
|
from transformers import ( |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
ViTImageProcessor, |
|
ViTMAEConfig, |
|
ViTMAEForPreTraining, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
""" Pre-training a 🤗 ViT model as an MAE (masked autoencoder), as proposed in https://arxiv.org/abs/2111.06377.""" |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
check_min_version("4.28.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default="cifar10", metadata={"help": "Name of a dataset from the datasets package"} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
image_column_name: Optional[str] = field( |
|
default=None, metadata={"help": "The column name of the images in the files."} |
|
) |
|
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) |
|
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) |
|
train_val_split: Optional[float] = field( |
|
default=0.15, metadata={"help": "Percent to split off of train for validation."} |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
data_files = {} |
|
if self.train_dir is not None: |
|
data_files["train"] = self.train_dir |
|
if self.validation_dir is not None: |
|
data_files["val"] = self.validation_dir |
|
self.data_files = data_files if data_files else None |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/image processor we are going to pre-train. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." |
|
) |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} |
|
) |
|
config_overrides: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Override some existing default config settings when a model is trained from scratch. Example: " |
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" |
|
) |
|
}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
mask_ratio: float = field( |
|
default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."} |
|
) |
|
norm_pix_loss: bool = field( |
|
default=True, metadata={"help": "Whether or not to train with normalized pixel values as target."} |
|
) |
|
|
|
|
|
@dataclass |
|
class CustomTrainingArguments(TrainingArguments): |
|
base_learning_rate: float = field( |
|
default=1e-3, metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} |
|
) |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
return {"pixel_values": pixel_values} |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_mae", model_args, data_args) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
ds = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
data_files=data_args.data_files, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split |
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: |
|
split = ds["train"].train_test_split(data_args.train_val_split) |
|
ds["train"] = split["train"] |
|
ds["validation"] = split["test"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
config_kwargs = { |
|
"cache_dir": model_args.cache_dir, |
|
"revision": model_args.model_revision, |
|
"use_auth_token": True if model_args.use_auth_token else None, |
|
} |
|
if model_args.config_name: |
|
config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs) |
|
elif model_args.model_name_or_path: |
|
config = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) |
|
else: |
|
config = ViTMAEConfig() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
if model_args.config_overrides is not None: |
|
logger.info(f"Overriding config: {model_args.config_overrides}") |
|
config.update_from_string(model_args.config_overrides) |
|
logger.info(f"New config: {config}") |
|
|
|
|
|
config.update( |
|
{ |
|
"mask_ratio": model_args.mask_ratio, |
|
"norm_pix_loss": model_args.norm_pix_loss, |
|
} |
|
) |
|
|
|
|
|
if model_args.image_processor_name: |
|
image_processor = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **config_kwargs) |
|
elif model_args.model_name_or_path: |
|
image_processor = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **config_kwargs) |
|
else: |
|
image_processor = ViTImageProcessor() |
|
|
|
|
|
if model_args.model_name_or_path: |
|
model = ViTMAEForPreTraining.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
logger.info("Training new model from scratch") |
|
model = ViTMAEForPreTraining(config) |
|
|
|
if training_args.do_train: |
|
column_names = ds["train"].column_names |
|
else: |
|
column_names = ds["validation"].column_names |
|
|
|
if data_args.image_column_name is not None: |
|
image_column_name = data_args.image_column_name |
|
elif "image" in column_names: |
|
image_column_name = "image" |
|
elif "img" in column_names: |
|
image_column_name = "img" |
|
else: |
|
image_column_name = column_names[0] |
|
|
|
|
|
|
|
if "shortest_edge" in image_processor.size: |
|
size = image_processor.size["shortest_edge"] |
|
else: |
|
size = (image_processor.size["height"], image_processor.size["width"]) |
|
transforms = Compose( |
|
[ |
|
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), |
|
RandomResizedCrop(size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC), |
|
RandomHorizontalFlip(), |
|
ToTensor(), |
|
Normalize(mean=image_processor.image_mean, std=image_processor.image_std), |
|
] |
|
) |
|
|
|
def preprocess_images(examples): |
|
"""Preprocess a batch of images by applying transforms.""" |
|
|
|
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]] |
|
return examples |
|
|
|
if training_args.do_train: |
|
if "train" not in ds: |
|
raise ValueError("--do_train requires a train dataset") |
|
if data_args.max_train_samples is not None: |
|
ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) |
|
|
|
ds["train"].set_transform(preprocess_images) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in ds: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
if data_args.max_eval_samples is not None: |
|
ds["validation"] = ( |
|
ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
ds["validation"].set_transform(preprocess_images) |
|
|
|
|
|
total_train_batch_size = ( |
|
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size |
|
) |
|
if training_args.base_learning_rate is not None: |
|
training_args.learning_rate = training_args.base_learning_rate * total_train_batch_size / 256 |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=ds["train"] if training_args.do_train else None, |
|
eval_dataset=ds["validation"] if training_args.do_eval else None, |
|
tokenizer=image_processor, |
|
data_collator=collate_fn, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate() |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
kwargs = { |
|
"tasks": "masked-auto-encoding", |
|
"dataset": data_args.dataset_name, |
|
"tags": ["masked-auto-encoding"], |
|
} |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|