|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training a CLIP like dual encoder models using text and vision encoders in the library. |
|
|
|
The script can be used to train CLIP like models for languages other than English by using |
|
a text encoder pre-trained in the desired language. Currently this script supports the following vision |
|
and text models: |
|
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip) |
|
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask) |
|
""" |
|
|
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from PIL import Image |
|
from torchvision.io import ImageReadMode, read_image |
|
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoImageProcessor, |
|
AutoModel, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
check_min_version("4.28.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt") |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
freeze_vision_model: bool = field( |
|
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."} |
|
) |
|
freeze_text_model: bool = field( |
|
default=False, metadata={"help": "Whether to freeze the text model parameters or not."} |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."}) |
|
image_column: Optional[str] = field( |
|
default="image_path", |
|
metadata={"help": "The name of the column in the datasets containing the full image file paths."}, |
|
) |
|
caption_column: Optional[str] = field( |
|
default="caption", |
|
metadata={"help": "The name of the column in the datasets containing the image captions."}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a jsonlines file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file (a jsonlines file)."}, |
|
) |
|
test_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input testing data file (a jsonlines file)."}, |
|
) |
|
max_seq_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension == "json", "`validation_file` should be a json file." |
|
|
|
|
|
dataset_name_mapping = { |
|
"image_caption_dataset.py": ("image_path", "caption"), |
|
} |
|
|
|
|
|
|
|
|
|
class Transform(torch.nn.Module): |
|
def __init__(self, image_size, mean, std): |
|
super().__init__() |
|
self.transforms = torch.nn.Sequential( |
|
Resize([image_size], interpolation=InterpolationMode.BICUBIC), |
|
CenterCrop(image_size), |
|
ConvertImageDtype(torch.float), |
|
Normalize(mean, std), |
|
) |
|
|
|
def forward(self, x) -> torch.Tensor: |
|
"""`x` should be an instance of `PIL.Image.Image`""" |
|
with torch.no_grad(): |
|
x = self.transforms(x) |
|
return x |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long) |
|
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long) |
|
return { |
|
"pixel_values": pixel_values, |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"return_loss": True, |
|
} |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_clip", model_args, data_args) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
dataset = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
keep_in_memory=False, |
|
data_dir=data_args.data_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
extension = data_args.train_file.split(".")[-1] |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = data_args.validation_file.split(".")[-1] |
|
if data_args.test_file is not None: |
|
data_files["test"] = data_args.test_file |
|
extension = data_args.test_file.split(".")[-1] |
|
dataset = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
|
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
|
|
image_processor = AutoImageProcessor.from_pretrained( |
|
model_args.image_processor_name or model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
model = AutoModel.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
config = model.config |
|
|
|
def _freeze_params(module): |
|
for param in module.parameters(): |
|
param.requires_grad = False |
|
|
|
if model_args.freeze_vision_model: |
|
_freeze_params(model.vision_model) |
|
|
|
if model_args.freeze_text_model: |
|
_freeze_params(model.text_model) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = dataset["train"].column_names |
|
elif training_args.do_eval: |
|
column_names = dataset["validation"].column_names |
|
elif training_args.do_predict: |
|
column_names = dataset["test"].column_names |
|
else: |
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") |
|
return |
|
|
|
|
|
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) |
|
if data_args.image_column is None: |
|
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] |
|
else: |
|
image_column = data_args.image_column |
|
if image_column not in column_names: |
|
raise ValueError( |
|
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
if data_args.caption_column is None: |
|
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] |
|
else: |
|
caption_column = data_args.caption_column |
|
if caption_column not in column_names: |
|
raise ValueError( |
|
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" |
|
) |
|
|
|
|
|
|
|
image_transformations = Transform( |
|
config.vision_config.image_size, image_processor.image_mean, image_processor.image_std |
|
) |
|
image_transformations = torch.jit.script(image_transformations) |
|
|
|
|
|
|
|
def tokenize_captions(examples): |
|
captions = list(examples[caption_column]) |
|
text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True) |
|
examples["input_ids"] = text_inputs.input_ids |
|
examples["attention_mask"] = text_inputs.attention_mask |
|
return examples |
|
|
|
def transform_images(examples): |
|
images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[image_column]] |
|
examples["pixel_values"] = [image_transformations(image) for image in images] |
|
return examples |
|
|
|
def filter_corrupt_images(examples): |
|
"""remove problematic images""" |
|
valid_images = [] |
|
for image_file in examples[image_column]: |
|
try: |
|
Image.open(image_file) |
|
valid_images.append(True) |
|
except Exception: |
|
valid_images.append(False) |
|
return valid_images |
|
|
|
if training_args.do_train: |
|
if "train" not in dataset: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = dataset["train"] |
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
|
|
train_dataset = train_dataset.filter( |
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers |
|
) |
|
train_dataset = train_dataset.map( |
|
function=tokenize_captions, |
|
batched=True, |
|
remove_columns=[col for col in column_names if col != image_column], |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on train dataset", |
|
) |
|
|
|
|
|
train_dataset.set_transform(transform_images) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in dataset: |
|
raise ValueError("--do_eval requires a train validation") |
|
eval_dataset = dataset["validation"] |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
|
|
eval_dataset = eval_dataset.filter( |
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers |
|
) |
|
eval_dataset = eval_dataset.map( |
|
function=tokenize_captions, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=[col for col in column_names if col != image_column], |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on validation dataset", |
|
) |
|
|
|
|
|
eval_dataset.set_transform(transform_images) |
|
|
|
if training_args.do_predict: |
|
if "test" not in dataset: |
|
raise ValueError("--do_predict requires a test dataset") |
|
test_dataset = dataset["test"] |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(test_dataset), data_args.max_eval_samples) |
|
test_dataset = test_dataset.select(range(max_eval_samples)) |
|
|
|
test_dataset = test_dataset.filter( |
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers |
|
) |
|
test_dataset = test_dataset.map( |
|
function=tokenize_captions, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=[col for col in column_names if col != image_column], |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on test dataset", |
|
) |
|
|
|
|
|
test_dataset.set_transform(transform_images) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
data_collator=collate_fn, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate() |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"} |
|
if data_args.dataset_name is not None: |
|
kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
kwargs["dataset_args"] = data_args.dataset_config_name |
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
kwargs["dataset"] = data_args.dataset_name |
|
|
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|