|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ |
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass |
|
from enum import Enum |
|
from typing import List, Optional, Union |
|
|
|
from filelock import FileLock |
|
|
|
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class InputExample: |
|
""" |
|
A single training/test example for token classification. |
|
|
|
Args: |
|
guid: Unique id for the example. |
|
words: list. The words of the sequence. |
|
labels: (Optional) list. The labels for each word of the sequence. This should be |
|
specified for train and dev examples, but not for test examples. |
|
""" |
|
|
|
guid: str |
|
words: List[str] |
|
labels: Optional[List[str]] |
|
|
|
|
|
@dataclass |
|
class InputFeatures: |
|
""" |
|
A single set of features of data. |
|
Property names are the same names as the corresponding inputs to a model. |
|
""" |
|
|
|
input_ids: List[int] |
|
attention_mask: List[int] |
|
token_type_ids: Optional[List[int]] = None |
|
label_ids: Optional[List[int]] = None |
|
|
|
|
|
class Split(Enum): |
|
train = "train" |
|
dev = "dev" |
|
test = "test" |
|
|
|
|
|
class TokenClassificationTask: |
|
@staticmethod |
|
def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]: |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def get_labels(path: str) -> List[str]: |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def convert_examples_to_features( |
|
examples: List[InputExample], |
|
label_list: List[str], |
|
max_seq_length: int, |
|
tokenizer: PreTrainedTokenizer, |
|
cls_token_at_end=False, |
|
cls_token="[CLS]", |
|
cls_token_segment_id=1, |
|
sep_token="[SEP]", |
|
sep_token_extra=False, |
|
pad_on_left=False, |
|
pad_token=0, |
|
pad_token_segment_id=0, |
|
pad_token_label_id=-100, |
|
sequence_a_segment_id=0, |
|
mask_padding_with_zero=True, |
|
) -> List[InputFeatures]: |
|
"""Loads a data file into a list of `InputFeatures` |
|
`cls_token_at_end` define the location of the CLS token: |
|
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] |
|
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] |
|
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) |
|
""" |
|
|
|
|
|
label_map = {label: i for i, label in enumerate(label_list)} |
|
|
|
features = [] |
|
for ex_index, example in enumerate(examples): |
|
if ex_index % 10_000 == 0: |
|
logger.info("Writing example %d of %d", ex_index, len(examples)) |
|
|
|
tokens = [] |
|
label_ids = [] |
|
for word, label in zip(example.words, example.labels): |
|
word_tokens = tokenizer.tokenize(word) |
|
|
|
|
|
if len(word_tokens) > 0: |
|
tokens.extend(word_tokens) |
|
|
|
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) |
|
|
|
|
|
special_tokens_count = tokenizer.num_special_tokens_to_add() |
|
if len(tokens) > max_seq_length - special_tokens_count: |
|
tokens = tokens[: (max_seq_length - special_tokens_count)] |
|
label_ids = label_ids[: (max_seq_length - special_tokens_count)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokens += [sep_token] |
|
label_ids += [pad_token_label_id] |
|
if sep_token_extra: |
|
|
|
tokens += [sep_token] |
|
label_ids += [pad_token_label_id] |
|
segment_ids = [sequence_a_segment_id] * len(tokens) |
|
|
|
if cls_token_at_end: |
|
tokens += [cls_token] |
|
label_ids += [pad_token_label_id] |
|
segment_ids += [cls_token_segment_id] |
|
else: |
|
tokens = [cls_token] + tokens |
|
label_ids = [pad_token_label_id] + label_ids |
|
segment_ids = [cls_token_segment_id] + segment_ids |
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens) |
|
|
|
|
|
|
|
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) |
|
|
|
|
|
padding_length = max_seq_length - len(input_ids) |
|
if pad_on_left: |
|
input_ids = ([pad_token] * padding_length) + input_ids |
|
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask |
|
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids |
|
label_ids = ([pad_token_label_id] * padding_length) + label_ids |
|
else: |
|
input_ids += [pad_token] * padding_length |
|
input_mask += [0 if mask_padding_with_zero else 1] * padding_length |
|
segment_ids += [pad_token_segment_id] * padding_length |
|
label_ids += [pad_token_label_id] * padding_length |
|
|
|
assert len(input_ids) == max_seq_length |
|
assert len(input_mask) == max_seq_length |
|
assert len(segment_ids) == max_seq_length |
|
assert len(label_ids) == max_seq_length |
|
|
|
if ex_index < 5: |
|
logger.info("*** Example ***") |
|
logger.info("guid: %s", example.guid) |
|
logger.info("tokens: %s", " ".join([str(x) for x in tokens])) |
|
logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) |
|
logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) |
|
logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) |
|
logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) |
|
|
|
if "token_type_ids" not in tokenizer.model_input_names: |
|
segment_ids = None |
|
|
|
features.append( |
|
InputFeatures( |
|
input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids |
|
) |
|
) |
|
return features |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch import nn |
|
from torch.utils.data import Dataset |
|
|
|
class TokenClassificationDataset(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach |
|
soon. |
|
""" |
|
|
|
features: List[InputFeatures] |
|
pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
token_classification_task: TokenClassificationTask, |
|
data_dir: str, |
|
tokenizer: PreTrainedTokenizer, |
|
labels: List[str], |
|
model_type: str, |
|
max_seq_length: Optional[int] = None, |
|
overwrite_cache=False, |
|
mode: Split = Split.train, |
|
): |
|
|
|
cached_features_file = os.path.join( |
|
data_dir, |
|
"cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)), |
|
) |
|
|
|
|
|
|
|
lock_path = cached_features_file + ".lock" |
|
with FileLock(lock_path): |
|
if os.path.exists(cached_features_file) and not overwrite_cache: |
|
logger.info(f"Loading features from cached file {cached_features_file}") |
|
self.features = torch.load(cached_features_file) |
|
else: |
|
logger.info(f"Creating features from dataset file at {data_dir}") |
|
examples = token_classification_task.read_examples_from_file(data_dir, mode) |
|
|
|
self.features = token_classification_task.convert_examples_to_features( |
|
examples, |
|
labels, |
|
max_seq_length, |
|
tokenizer, |
|
cls_token_at_end=bool(model_type in ["xlnet"]), |
|
|
|
cls_token=tokenizer.cls_token, |
|
cls_token_segment_id=2 if model_type in ["xlnet"] else 0, |
|
sep_token=tokenizer.sep_token, |
|
sep_token_extra=False, |
|
|
|
pad_on_left=bool(tokenizer.padding_side == "left"), |
|
pad_token=tokenizer.pad_token_id, |
|
pad_token_segment_id=tokenizer.pad_token_type_id, |
|
pad_token_label_id=self.pad_token_label_id, |
|
) |
|
logger.info(f"Saving features into cached file {cached_features_file}") |
|
torch.save(self.features, cached_features_file) |
|
|
|
def __len__(self): |
|
return len(self.features) |
|
|
|
def __getitem__(self, i) -> InputFeatures: |
|
return self.features[i] |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
class TFTokenClassificationDataset: |
|
""" |
|
This will be superseded by a framework-agnostic approach |
|
soon. |
|
""" |
|
|
|
features: List[InputFeatures] |
|
pad_token_label_id: int = -100 |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
token_classification_task: TokenClassificationTask, |
|
data_dir: str, |
|
tokenizer: PreTrainedTokenizer, |
|
labels: List[str], |
|
model_type: str, |
|
max_seq_length: Optional[int] = None, |
|
overwrite_cache=False, |
|
mode: Split = Split.train, |
|
): |
|
examples = token_classification_task.read_examples_from_file(data_dir, mode) |
|
|
|
self.features = token_classification_task.convert_examples_to_features( |
|
examples, |
|
labels, |
|
max_seq_length, |
|
tokenizer, |
|
cls_token_at_end=bool(model_type in ["xlnet"]), |
|
|
|
cls_token=tokenizer.cls_token, |
|
cls_token_segment_id=2 if model_type in ["xlnet"] else 0, |
|
sep_token=tokenizer.sep_token, |
|
sep_token_extra=False, |
|
|
|
pad_on_left=bool(tokenizer.padding_side == "left"), |
|
pad_token=tokenizer.pad_token_id, |
|
pad_token_segment_id=tokenizer.pad_token_type_id, |
|
pad_token_label_id=self.pad_token_label_id, |
|
) |
|
|
|
def gen(): |
|
for ex in self.features: |
|
if ex.token_type_ids is None: |
|
yield ( |
|
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, |
|
ex.label_ids, |
|
) |
|
else: |
|
yield ( |
|
{ |
|
"input_ids": ex.input_ids, |
|
"attention_mask": ex.attention_mask, |
|
"token_type_ids": ex.token_type_ids, |
|
}, |
|
ex.label_ids, |
|
) |
|
|
|
if "token_type_ids" not in tokenizer.model_input_names: |
|
self.dataset = tf.data.Dataset.from_generator( |
|
gen, |
|
({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), |
|
( |
|
{"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, |
|
tf.TensorShape([None]), |
|
), |
|
) |
|
else: |
|
self.dataset = tf.data.Dataset.from_generator( |
|
gen, |
|
({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), |
|
( |
|
{ |
|
"input_ids": tf.TensorShape([None]), |
|
"attention_mask": tf.TensorShape([None]), |
|
"token_type_ids": tf.TensorShape([None]), |
|
}, |
|
tf.TensorShape([None]), |
|
), |
|
) |
|
|
|
def get_dataset(self): |
|
self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) |
|
|
|
return self.dataset |
|
|
|
def __len__(self): |
|
return len(self.features) |
|
|
|
def __getitem__(self, i) -> InputFeatures: |
|
return self.features[i] |
|
|