Spaces:
sonalkum
/
Running on Zero

File size: 52,700 Bytes
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import os
import warnings
from contextlib import contextmanager

import torch
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.hooks import AlignDevicesHook, add_hook_to_module, remove_hook_from_submodules
from accelerate.utils import get_balanced_memory
from huggingface_hub import hf_hub_download
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import PreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput, TokenClassifierOutput
from transformers.utils import PushToHubMixin

from .tuners import AdaLoraModel, LoraModel, PrefixEncoder, PromptEmbedding, PromptEncoder
from .utils import (
    TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING,
    WEIGHTS_NAME,
    PeftConfig,
    PeftType,
    PromptLearningConfig,
    TaskType,
    _set_adapter,
    _set_trainable,
    get_peft_model_state_dict,
    set_peft_model_state_dict,
    shift_tokens_right,
)


PEFT_TYPE_TO_MODEL_MAPPING = {
    PeftType.LORA: LoraModel,
    PeftType.PROMPT_TUNING: PromptEmbedding,
    PeftType.P_TUNING: PromptEncoder,
    PeftType.PREFIX_TUNING: PrefixEncoder,
    PeftType.ADALORA: AdaLoraModel,
}


class PeftModel(PushToHubMixin, torch.nn.Module):
    """
    Base model encompassing various Peft methods.

    Args:
        model ([`~transformers.PreTrainedModel`]): The base transformer model used for Peft.
        peft_config ([`PeftConfig`]): The configuration of the Peft model.


    **Attributes**:
        - **base_model** ([`~transformers.PreTrainedModel`]) -- The base transformer model used for Peft.
        - **peft_config** ([`PeftConfig`]) -- The configuration of the Peft model.
        - **modules_to_save** (`list` of `str`) -- The list of sub-module names to save when
        saving the model.
        - **prompt_encoder** ([`PromptEncoder`]) -- The prompt encoder used for Peft if
        using [`PromptLearningConfig`].
        - **prompt_tokens** (`torch.Tensor`) -- The virtual prompt tokens used for Peft if
        using [`PromptLearningConfig`].
        - **transformer_backbone_name** (`str`) -- The name of the transformer
        backbone in the base model if using [`PromptLearningConfig`].
        - **word_embeddings** (`torch.nn.Embedding`) -- The word embeddings of the transformer backbone
        in the base model if using [`PromptLearningConfig`].
    """

    def __init__(self, model, peft_config: PeftConfig, adapter_name="default"):
        super().__init__()
        self.base_model = model
        self.config = self.base_model.config
        self.modules_to_save = None
        self.peft_config = {}
        self.active_adapter = adapter_name
        self.peft_type = peft_config.peft_type
        self.base_model_torch_dtype = getattr(model, "dtype", None)
        if not isinstance(peft_config, PromptLearningConfig):
            self.peft_config[adapter_name] = peft_config
            print(PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type])
            self.base_model = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type](
                self.base_model, self.peft_config, adapter_name
            )
            self.set_additional_trainable_modules(peft_config, adapter_name)
        else:
            self.add_adapter(adapter_name, peft_config)

    def save_pretrained(self, save_directory, **kwargs):
        r"""
        This function saves the adapter model and the adapter configuration files to a directory, so that it can be
        reloaded using the [`LoraModel.from_pretrained`] class method, and also used by the [`LoraModel.push_to_hub`]
        method.

        Args:
            save_directory (`str`):
                Directory where the adapter model and configuration files will be saved (will be created if it does not
                exist).
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments passed along to the `push_to_hub` method.
        """
        if os.path.isfile(save_directory):
            raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
        os.makedirs(save_directory, exist_ok=True)

        for adapter_name, peft_config in self.peft_config.items():
            # save only the trainable weights
            output_state_dict = get_peft_model_state_dict(
                self, state_dict=kwargs.get("state_dict", None), adapter_name=adapter_name
            )
            output_dir = os.path.join(save_directory, adapter_name) if adapter_name != "default" else save_directory
            os.makedirs(output_dir, exist_ok=True)
            torch.save(output_state_dict, os.path.join(output_dir, WEIGHTS_NAME))

            # save the config and change the inference mode to `True`
            if peft_config.base_model_name_or_path is None:
                peft_config.base_model_name_or_path = (
                    self.base_model.__dict__.get("name_or_path", None)
                    if isinstance(peft_config, PromptLearningConfig)
                    else self.base_model.model.__dict__.get("name_or_path", None)
                )
            inference_mode = peft_config.inference_mode
            peft_config.inference_mode = True
            peft_config.save_pretrained(output_dir)
            peft_config.inference_mode = inference_mode

    @classmethod
    def from_pretrained(cls, model, model_id, adapter_name="default", is_trainable=False, **kwargs):
        r"""
        Instantiate a [`LoraModel`] from a pretrained Lora configuration and weights.

        Args:
            model ([`~transformers.PreTrainedModel`]):
                The model to be adapted. The model should be initialized with the
                [`~transformers.PreTrainedModel.from_pretrained`] method from the 🤗 Transformers library.
            model_id (`str` or `os.PathLike`):
                The name of the Lora configuration to use. Can be either:
                    - A string, the `model id` of a Lora configuration hosted inside a model repo on the Hugging Face
                      Hub.
                    - A path to a directory containing a Lora configuration file saved using the `save_pretrained`
                      method (`./my_lora_config_directory/`).
        """
        from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING, PEFT_TYPE_TO_CONFIG_MAPPING

        # load the config
        config = PEFT_TYPE_TO_CONFIG_MAPPING[
            PeftConfig.from_pretrained(model_id, subfolder=kwargs.get("subfolder", None)).peft_type
        ].from_pretrained(model_id, subfolder=kwargs.get("subfolder", None))

        if (getattr(model, "hf_device_map", None) is not None) and len(
            set(model.hf_device_map.values()).intersection({"cpu", "disk"})
        ) > 0:
            remove_hook_from_submodules(model)

        if isinstance(config, PromptLearningConfig) and is_trainable:
            raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.")
        else:
            config.inference_mode = not is_trainable

        if config.task_type not in MODEL_TYPE_TO_PEFT_MODEL_MAPPING.keys():
            model = cls(model, config, adapter_name)
        else:
            model = MODEL_TYPE_TO_PEFT_MODEL_MAPPING[config.task_type](model, config, adapter_name)
        model.load_adapter(model_id, adapter_name, **kwargs)
        return model

    def _setup_prompt_encoder(self, adapter_name):
        config = self.peft_config[adapter_name]
        self.prompt_encoder = torch.nn.ModuleDict({})
        self.prompt_tokens = {}
        transformer_backbone = None
        for name, module in self.base_model.named_children():
            for param in module.parameters():
                param.requires_grad = False
            if isinstance(module, PreTrainedModel):
                # Make sure to freeze Tranformers model
                if transformer_backbone is None:
                    transformer_backbone = module
                    self.transformer_backbone_name = name

        if config.num_transformer_submodules is None:
            config.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1

        for named_param, value in list(transformer_backbone.named_parameters()):
            if value.shape[0] == self.base_model.config.vocab_size:
                self.word_embeddings = transformer_backbone.get_submodule(named_param.replace(".weight", ""))
                break

        if config.peft_type == PeftType.PROMPT_TUNING:
            prompt_encoder = PromptEmbedding(config, self.word_embeddings)
        elif config.peft_type == PeftType.P_TUNING:
            prompt_encoder = PromptEncoder(config)
        elif config.peft_type == PeftType.PREFIX_TUNING:
            prompt_encoder = PrefixEncoder(config)
        else:
            raise ValueError("Not supported")
        self.prompt_encoder.update(torch.nn.ModuleDict({adapter_name: prompt_encoder}))
        self.prompt_tokens[adapter_name] = torch.arange(
            config.num_virtual_tokens * config.num_transformer_submodules
        ).long()

    def get_prompt_embedding_to_save(self, adapter_name):
        """
        Returns the prompt embedding to save when saving the model. Only applicable when `peft_config.peft_type !=
        PeftType.LORA`.
        """
        prompt_tokens = self.prompt_tokens[adapter_name].unsqueeze(0).expand(1, -1).to(self.device)
        if self.peft_config[adapter_name].peft_type == PeftType.PREFIX_TUNING:
            prompt_tokens = prompt_tokens[:, : self.peft_config[adapter_name].num_virtual_tokens]
        prompt_embeddings = self.prompt_encoder[adapter_name](prompt_tokens)
        return prompt_embeddings[0].detach().cpu()

    def get_prompt(self, batch_size):
        """
        Returns the virtual prompts to use for Peft. Only applicable when `peft_config.peft_type != PeftType.LORA`.
        """
        peft_config = self.active_peft_config
        prompt_encoder = self.prompt_encoder[self.active_adapter]
        prompt_tokens = self.prompt_tokens[self.active_adapter].unsqueeze(0).expand(batch_size, -1).to(self.device)
        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            prompt_tokens = prompt_tokens[:, : peft_config.num_virtual_tokens]
            if peft_config.inference_mode:
                past_key_values = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1)
            else:
                past_key_values = prompt_encoder(prompt_tokens)
            past_key_values = past_key_values.view(
                batch_size,
                peft_config.num_virtual_tokens,
                peft_config.num_layers * 2,
                peft_config.num_attention_heads,
                peft_config.token_dim // peft_config.num_attention_heads,
            )
            if peft_config.num_transformer_submodules == 2:
                past_key_values = torch.cat([past_key_values, past_key_values], dim=2)
            past_key_values = past_key_values.permute([2, 0, 3, 1, 4]).split(
                peft_config.num_transformer_submodules * 2
            )
            if TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING.get(self.config.model_type, None) is not None:
                post_process_fn = TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING[self.config.model_type]
                past_key_values = post_process_fn(past_key_values)
            return past_key_values
        else:
            if peft_config.inference_mode:
                prompts = prompt_encoder.embedding.weight.repeat(batch_size, 1, 1)
            else:
                prompts = prompt_encoder(prompt_tokens)
            return prompts

    def print_trainable_parameters(self):
        """
        Prints the number of trainable parameters in the model.
        """
        trainable_params = 0
        all_param = 0
        for _, param in self.named_parameters():
            num_params = param.numel()
            # if using DS Zero 3 and the weights are initialized empty
            if num_params == 0 and hasattr(param, "ds_numel"):
                num_params = param.ds_numel

            all_param += num_params
            if param.requires_grad:
                trainable_params += num_params
        print(
            f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
        )

    def __getattr__(self, name: str):
        """Forward missing attributes to the wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            return getattr(self.base_model, name)

    def forward(self, *args, **kwargs):
        """
        Forward pass of the model.
        """
        return self.get_base_model()(*args, **kwargs)

    @contextmanager
    def disable_adapter(self):
        """
        Disables the adapter module.
        """
        if isinstance(self.active_peft_config, PromptLearningConfig):
            old_forward = self.forward
            self.forward = self.base_model.forward
        else:
            self.base_model.disable_adapter_layers()
        yield
        if isinstance(self.active_peft_config, PromptLearningConfig):
            self.forward = old_forward
        else:
            self.base_model.enable_adapter_layers()

    def get_base_model(self):
        """
        Returns the base model.
        """
        return self.base_model if isinstance(self.active_peft_config, PromptLearningConfig) else self.base_model.model

    def add_adapter(self, adapter_name, peft_config):
        if peft_config.peft_type != self.peft_type:
            raise ValueError(
                f"Cannot combine adapters with different peft types. "
                f"Found {self.peft_type} and {peft_config.peft_type}."
            )
        self.peft_config[adapter_name] = peft_config
        if isinstance(peft_config, PromptLearningConfig):
            self._setup_prompt_encoder(adapter_name)
        else:
            self.base_model.add_adapter(adapter_name, peft_config)

        self.set_additional_trainable_modules(peft_config, adapter_name)

    def set_additional_trainable_modules(self, peft_config, adapter_name):
        if getattr(peft_config, "modules_to_save", None) is not None:
            if self.modules_to_save is None:
                self.modules_to_save = set(peft_config.modules_to_save)
            else:
                self.modules_to_save.update(peft_config.modules_to_save)
            _set_trainable(self, adapter_name)

    def load_adapter(self, model_id, adapter_name, is_trainable=False, **kwargs):
        from .mapping import PEFT_TYPE_TO_CONFIG_MAPPING

        if adapter_name not in self.peft_config:
            # load the config
            peft_config = PEFT_TYPE_TO_CONFIG_MAPPING[
                PeftConfig.from_pretrained(model_id, subfolder=kwargs.get("subfolder", None)).peft_type
            ].from_pretrained(model_id, subfolder=kwargs.get("subfolder", None))
            if isinstance(peft_config, PromptLearningConfig) and is_trainable:
                raise ValueError("Cannot set a prompt learning adapter to trainable when loading pretrained adapter.")
            else:
                peft_config.inference_mode = not is_trainable
            self.add_adapter(adapter_name, peft_config)

        # load weights if any
        path = os.path.join(model_id, kwargs["subfolder"]) if kwargs.get("subfolder", None) is not None else model_id

        if os.path.exists(os.path.join(path, WEIGHTS_NAME)):
            filename = os.path.join(path, WEIGHTS_NAME)
        else:
            try:
                filename = hf_hub_download(model_id, WEIGHTS_NAME, subfolder=kwargs.get("subfolder", None))
            except:  # noqa
                raise ValueError(
                    f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. "
                    f"Please check that the file {WEIGHTS_NAME} is present at {model_id}."
                )

        adapters_weights = torch.load(
            filename, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu")
        )
        # load the weights into the model
        set_peft_model_state_dict(self, adapters_weights, adapter_name=adapter_name)
        if (
            (getattr(self, "hf_device_map", None) is not None)
            and (len(set(self.hf_device_map.values()).intersection({"cpu", "disk"})) > 0)
            and len(self.peft_config) == 1
        ):
            device_map = kwargs.get("device_map", "auto")
            max_memory = kwargs.get("max_memory", None)
            offload_dir = kwargs.get("offload_folder", None)
            offload_index = kwargs.get("offload_index", None)

            dispatch_model_kwargs = {}
            # Safety checker for previous `accelerate` versions
            # `offload_index` was introduced in https://github.com/huggingface/accelerate/pull/873/
            if "offload_index" in inspect.signature(dispatch_model).parameters:
                dispatch_model_kwargs["offload_index"] = offload_index

            no_split_module_classes = self._no_split_modules

            if device_map != "sequential":
                max_memory = get_balanced_memory(
                    self,
                    max_memory=max_memory,
                    no_split_module_classes=no_split_module_classes,
                    low_zero=(device_map == "balanced_low_0"),
                )
            if isinstance(device_map, str):
                device_map = infer_auto_device_map(
                    self, max_memory=max_memory, no_split_module_classes=no_split_module_classes
                )
            dispatch_model(
                self,
                device_map=device_map,
                offload_dir=offload_dir,
                **dispatch_model_kwargs,
            )
            hook = AlignDevicesHook(io_same_device=True)
            if isinstance(self.peft_config[adapter_name], PromptLearningConfig):
                remove_hook_from_submodules(self.prompt_encoder)
            add_hook_to_module(self.get_base_model(), hook)

        # Set model in evaluation mode to deactivate Dropout modules by default
        self.eval()

    def set_adapter(self, adapter_name):
        """
        Sets the active adapter.
        """
        if adapter_name not in self.peft_config:
            raise ValueError(f"Adapter {adapter_name} not found.")
        self.active_adapter = adapter_name
        if not isinstance(self.peft_config[adapter_name], PromptLearningConfig):
            self.base_model.set_adapter(adapter_name)
        _set_adapter(self, adapter_name)

    @property
    def active_peft_config(self):
        return self.peft_config[self.active_adapter]



class PeftModelForCausalLM(PeftModel):
    """
    Peft model for causal language modeling.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.


    Example:

        ```py
        >>> from transformers import AutoModelForCausalLM
        >>> from peft import PeftModelForCausalLM, get_peft_config

        >>> config = {
        ...     "peft_type": "PREFIX_TUNING",
        ...     "task_type": "CAUSAL_LM",
        ...     "inference_mode": False,
        ...     "num_virtual_tokens": 20,
        ...     "token_dim": 1280,
        ...     "num_transformer_submodules": 1,
        ...     "num_attention_heads": 20,
        ...     "num_layers": 36,
        ...     "encoder_hidden_size": 1280,
        ...     "prefix_projection": False,
        ...     "postprocess_past_key_value_function": None,
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForCausalLM.from_pretrained("gpt2-large")
        >>> peft_model = PeftModelForCausalLM(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 1843200 || all params: 775873280 || trainable%: 0.23756456724479544
        ```
    """

    def __init__(self, model, peft_config: PeftConfig, adapter_name="default"):
        super().__init__(model, peft_config, adapter_name)
        self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation

    def forward(
        self,
        input_ids=None,
        audio_input=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        if not isinstance(peft_config, PromptLearningConfig):
            return self.base_model(
                input_ids=input_ids,
                audio_input=audio_input,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                labels=labels,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs,
            )

        batch_size = input_ids.shape[0]
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)

        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        if kwargs.get("token_type_ids", None) is not None:
            warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids")
            kwargs["token_type_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            past_key_values = self.get_prompt(batch_size)
            print('goes to loop forward 2')
            return self.base_model(input_ids=input_ids, past_key_values=past_key_values, **kwargs)
        else:
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            # concat prompt labels
            if labels is not None:
                prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(self.device)
                kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1)
            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            print('goes to loop forward 3')
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def generate(self, **kwargs):
        peft_config = self.active_peft_config
        self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation
        try:
            if not isinstance(peft_config, PromptLearningConfig):
                outputs = self.base_model.generate(**kwargs)
            else:
                if "input_ids" not in kwargs:
                    raise ValueError("input_ids must be provided for Peft model generation")
                # For gpt2 models, we construct postion_ids on the fly by using attention mask, and position ids need to match input_shape.
                # for prefix tuning, input shape is determined using `input_ids`. Thus we should not expand 'attention_mask' here
                # for prompt tuning input_ids is not passed but a concatenated input_embeds is passed. Thus attention_mask needs to be of same size of num_virtual_tokens + input_ids
                if kwargs.get("attention_mask", None) is not None and peft_config.peft_type in [
                    PeftType.PROMPT_TUNING,
                    PeftType.P_TUNING,
                ]:
                    # concat prompt attention mask
                    prefix_attention_mask = torch.ones(
                        kwargs["input_ids"].shape[0], peft_config.num_virtual_tokens
                    ).to(kwargs["input_ids"].device)
                    kwargs["attention_mask"] = torch.cat((prefix_attention_mask, kwargs["attention_mask"]), dim=1)

                if kwargs.get("position_ids", None) is not None:
                    warnings.warn(
                        "Position ids are not supported for parameter efficient tuning. Ignoring position ids."
                    )
                    kwargs["position_ids"] = None
                if kwargs.get("token_type_ids", None) is not None:
                    warnings.warn(
                        "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids"
                    )
                    kwargs["token_type_ids"] = None

                outputs = self.base_model.generate(**kwargs)
        except:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            raise
        else:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            return outputs

    def prepare_inputs_for_generation(self, *args, **kwargs):
        peft_config = self.active_peft_config
        model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs)
        if isinstance(peft_config, PromptLearningConfig):
            if peft_config.peft_type == PeftType.PREFIX_TUNING:
                prefix_attention_mask = torch.ones(
                    model_kwargs["input_ids"].shape[0], peft_config.num_virtual_tokens
                ).to(model_kwargs["input_ids"].device)
                model_kwargs["attention_mask"] = torch.cat(
                    (prefix_attention_mask, model_kwargs["attention_mask"]), dim=1
                )

            if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING:
                past_key_values = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0])

                if self.base_model_torch_dtype is not None:
                    # handle the case for Bloom where it outputs tuple of tuples
                    if isinstance(past_key_values[0], tuple):
                        past_key_values = tuple(
                            tuple(
                                past_key_value.to(self.base_model_torch_dtype)
                                for past_key_value in past_key_value_tuple
                            )
                            for past_key_value_tuple in past_key_values
                        )
                    else:
                        past_key_values = tuple(
                            past_key_value.to(self.base_model_torch_dtype) for past_key_value in past_key_values
                        )

                model_kwargs["past_key_values"] = past_key_values
            else:
                if model_kwargs["past_key_values"] is None:
                    inputs_embeds = self.word_embeddings(model_kwargs["input_ids"])
                    prompts = self.get_prompt(batch_size=model_kwargs["input_ids"].shape[0])
                    prompts = prompts.to(inputs_embeds.dtype)
                    model_kwargs["inputs_embeds"] = torch.cat((prompts, inputs_embeds), dim=1)
                    model_kwargs["input_ids"] = None

        return model_kwargs


class PeftModelForSeq2SeqLM(PeftModel):
    """
    Peft model for sequence-to-sequence language modeling.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.


    Example:

        ```py
        >>> from transformers import AutoModelForSeq2SeqLM
        >>> from peft import PeftModelForSeq2SeqLM, get_peft_config

        >>> config = {
        ...     "peft_type": "LORA",
        ...     "task_type": "SEQ_2_SEQ_LM",
        ...     "inference_mode": False,
        ...     "r": 8,
        ...     "target_modules": ["q", "v"],
        ...     "lora_alpha": 32,
        ...     "lora_dropout": 0.1,
        ...     "merge_weights": False,
        ...     "fan_in_fan_out": False,
        ...     "enable_lora": None,
        ...     "bias": "none",
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
        >>> peft_model = PeftModelForSeq2SeqLM(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 884736 || all params: 223843584 || trainable%: 0.3952474242013566
        ```
    """

    def __init__(self, model, peft_config: PeftConfig, adapter_name="default"):
        super().__init__(model, peft_config, adapter_name)
        self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation
        self.base_model_prepare_encoder_decoder_kwargs_for_generation = (
            self.base_model._prepare_encoder_decoder_kwargs_for_generation
        )

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        decoder_inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        if not isinstance(peft_config, PromptLearningConfig):
            return self.base_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                decoder_inputs_embeds=decoder_inputs_embeds,
                labels=labels,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs,
            )

        batch_size = input_ids.shape[0]
        if decoder_attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device)
            decoder_attention_mask = torch.cat((prefix_attention_mask, decoder_attention_mask), dim=1)

        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        if kwargs.get("token_type_ids", None) is not None:
            warnings.warn("Token type ids are not supported for parameter efficient tuning. Ignoring token type ids")
            kwargs["token_type_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "decoder_attention_mask": decoder_attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            past_key_values = self.get_prompt(batch_size)
            return self.base_model(
                input_ids=input_ids, decoder_input_ids=decoder_input_ids, past_key_values=past_key_values, **kwargs
            )
        else:
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            if decoder_inputs_embeds is None and decoder_input_ids is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )
                decoder_inputs_embeds = self.word_embeddings(decoder_input_ids)

            if attention_mask is not None:
                # concat prompt attention mask
                prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device)
                kwargs["attention_mask"] = torch.cat((prefix_attention_mask, attention_mask), dim=1)
            # concat prompt labels
            if labels is not None:
                if peft_config.num_transformer_submodules == 1:
                    kwargs["labels"] = labels
                elif peft_config.num_transformer_submodules == 2:
                    prefix_labels = torch.full((batch_size, peft_config.num_virtual_tokens), -100).to(self.device)
                    kwargs["labels"] = torch.cat((prefix_labels, labels), dim=1)
            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts[:, : peft_config.num_virtual_tokens], inputs_embeds), dim=1)
            if peft_config.num_transformer_submodules == 1:
                return self.base_model(inputs_embeds=inputs_embeds, **kwargs)
            elif peft_config.num_transformer_submodules == 2:
                decoder_inputs_embeds = torch.cat(
                    (prompts[:, peft_config.num_virtual_tokens :], decoder_inputs_embeds), dim=1
                )
                return self.base_model(
                    inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **kwargs
                )

    def generate(self, **kwargs):
        peft_config = self.active_peft_config
        self.base_model.prepare_inputs_for_generation = self.prepare_inputs_for_generation
        self.base_model._prepare_encoder_decoder_kwargs_for_generation = (
            self._prepare_encoder_decoder_kwargs_for_generation
        )
        try:
            if not isinstance(peft_config, PromptLearningConfig):
                outputs = self.base_model.generate(**kwargs)
            else:
                if "input_ids" not in kwargs:
                    raise ValueError("input_ids must be provided for Peft model generation")
                if kwargs.get("position_ids", None) is not None:
                    warnings.warn(
                        "Position ids are not supported for parameter efficient tuning. Ignoring position ids."
                    )
                    kwargs["position_ids"] = None
                if kwargs.get("token_type_ids", None) is not None:
                    warnings.warn(
                        "Token type ids are not supported for parameter efficient tuning. Ignoring token type ids"
                    )
                    kwargs["token_type_ids"] = None

                if peft_config.peft_type == PeftType.PREFIX_TUNING:
                    outputs = self.base_model.generate(**kwargs)
                else:
                    raise NotImplementedError
        except:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            self.base_model._prepare_encoder_decoder_kwargs_for_generation = (
                self.base_model_prepare_encoder_decoder_kwargs_for_generation
            )
            raise
        else:
            self.base_model.prepare_inputs_for_generation = self.base_model_prepare_inputs_for_generation
            self.base_model._prepare_encoder_decoder_kwargs_for_generation = (
                self.base_model_prepare_encoder_decoder_kwargs_for_generation
            )
            return outputs

    def prepare_inputs_for_generation(self, *args, **kwargs):
        peft_config = self.active_peft_config
        model_kwargs = self.base_model_prepare_inputs_for_generation(*args, **kwargs)
        if model_kwargs["past_key_values"] is None and peft_config.peft_type == PeftType.PREFIX_TUNING:
            batch_size = model_kwargs["decoder_input_ids"].shape[0]
            past_key_values = self.get_prompt(batch_size)
            if self.base_model_torch_dtype is not None:
                # handle the case for Bloom where it outputs tuple of tuples
                if isinstance(past_key_values[0], tuple):
                    past_key_values = tuple(
                        tuple(
                            past_key_value.to(self.base_model_torch_dtype) for past_key_value in past_key_value_tuple
                        )
                        for past_key_value_tuple in past_key_values
                    )
                else:
                    past_key_values = tuple(
                        past_key_value.to(self.base_model_torch_dtype) for past_key_value in past_key_values
                    )
            model_kwargs["past_key_values"] = past_key_values

        return model_kwargs


class PeftModelForTokenClassification(PeftModel):
    """
    Peft model for token classification tasks.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.

    **Attributes**:
        - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
        - **cls_layer_name** (`str`) -- The name of the classification layer.

    Example:

        ```py
        >>> from transformers import AutoModelForSequenceClassification
        >>> from peft import PeftModelForTokenClassification, get_peft_config

        >>> config = {
        ...     "peft_type": "PREFIX_TUNING",
        ...     "task_type": "TOKEN_CLS",
        ...     "inference_mode": False,
        ...     "num_virtual_tokens": 20,
        ...     "token_dim": 768,
        ...     "num_transformer_submodules": 1,
        ...     "num_attention_heads": 12,
        ...     "num_layers": 12,
        ...     "encoder_hidden_size": 768,
        ...     "prefix_projection": False,
        ...     "postprocess_past_key_value_function": None,
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForTokenClassification.from_pretrained("bert-base-cased")
        >>> peft_model = PeftModelForTokenClassification(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117
        ```
    """

    def __init__(self, model, peft_config: PeftConfig = None, adapter_name="default"):
        super().__init__(model, peft_config, adapter_name)
        if self.modules_to_save is None:
            self.modules_to_save = {"classifier", "score"}
        else:
            self.modules_to_save.update({"classifier", "score"})

        for name, _ in self.base_model.named_children():
            if any(module_name in name for module_name in self.modules_to_save):
                self.cls_layer_name = name
                break

        # to make sure classifier layer is trainable
        _set_trainable(self, adapter_name)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        peft_config = self.active_peft_config
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if not isinstance(peft_config, PromptLearningConfig):
            return self.base_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                labels=labels,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs,
            )

        batch_size = input_ids.shape[0]
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            return self._prefix_tuning_forward(input_ids=input_ids, **kwargs)
        else:
            if kwargs.get("token_type_ids", None) is not None:
                kwargs["token_type_ids"] = torch.cat(
                    (
                        torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.device),
                        kwargs["token_type_ids"],
                    ),
                    dim=1,
                ).long()
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def _prefix_tuning_forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        batch_size = input_ids.shape[0]
        past_key_values = self.get_prompt(batch_size)
        fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys())
        kwargs.update(
            {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "inputs_embeds": inputs_embeds,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
                "past_key_values": past_key_values,
            }
        )
        if "past_key_values" in fwd_params:
            return self.base_model(labels=labels, **kwargs)
        else:
            transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name)
            fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys())
            if "past_key_values" not in fwd_params:
                raise ValueError("Model does not support past key values which are required for prefix tuning.")
            outputs = transformer_backbone_name(**kwargs)
            sequence_output = outputs[0]
            if "dropout" in [name for name, _ in list(self.base_model.named_children())]:
                sequence_output = self.base_model.dropout(sequence_output)
            logits = self.base_model.get_submodule(self.cls_layer_name)(sequence_output)

            loss = None
            loss = None
            if labels is not None:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

            if not return_dict:
                output = (logits,) + outputs[2:]
                return ((loss,) + output) if loss is not None else output

            return TokenClassifierOutput(
                loss=loss,
                logits=logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )


class PeftModelForSequenceClassification(PeftModel):
    """
    Peft model for sequence classification tasks.

    Args:
        model ([`~transformers.PreTrainedModel`]): Base transformer model.
        peft_config ([`PeftConfig`]): Peft config.

    **Attributes**:
        - **config** ([`~transformers.PretrainedConfig`]) -- The configuration object of the base model.
        - **cls_layer_name** (`str`) -- The name of the classification layer.

    Example:

        ```py
        >>> from transformers import AutoModelForSequenceClassification
        >>> from peft import PeftModelForSequenceClassification, get_peft_config

        >>> config = {
        ...     "peft_type": "PREFIX_TUNING",
        ...     "task_type": "SEQ_CLS",
        ...     "inference_mode": False,
        ...     "num_virtual_tokens": 20,
        ...     "token_dim": 768,
        ...     "num_transformer_submodules": 1,
        ...     "num_attention_heads": 12,
        ...     "num_layers": 12,
        ...     "encoder_hidden_size": 768,
        ...     "prefix_projection": False,
        ...     "postprocess_past_key_value_function": None,
        ... }

        >>> peft_config = get_peft_config(config)
        >>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased")
        >>> peft_model = PeftModelForSequenceClassification(model, peft_config)
        >>> peft_model.print_trainable_parameters()
        trainable params: 370178 || all params: 108680450 || trainable%: 0.3406113979101117
        ```
    """

    def __init__(self, model, peft_config: PeftConfig, adapter_name="default"):
        super().__init__(model, peft_config, adapter_name)
        if self.modules_to_save is None:
            self.modules_to_save = {"classifier", "score"}
        else:
            self.modules_to_save.update({"classifier", "score"})

        for name, _ in self.base_model.named_children():
            if any(module_name in name for module_name in self.modules_to_save):
                self.cls_layer_name = name
                break

        # to make sure classifier layer is trainable
        _set_trainable(self, adapter_name)

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        peft_config = self.active_peft_config
        if not isinstance(peft_config, PromptLearningConfig):
            return self.base_model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                labels=labels,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs,
            )

        batch_size = input_ids.shape[0]
        if attention_mask is not None:
            # concat prompt attention mask
            prefix_attention_mask = torch.ones(batch_size, peft_config.num_virtual_tokens).to(self.device)
            attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
        if kwargs.get("position_ids", None) is not None:
            warnings.warn("Position ids are not supported for parameter efficient tuning. Ignoring position ids.")
            kwargs["position_ids"] = None
        kwargs.update(
            {
                "attention_mask": attention_mask,
                "labels": labels,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
            }
        )

        if peft_config.peft_type == PeftType.PREFIX_TUNING:
            return self._prefix_tuning_forward(input_ids=input_ids, **kwargs)
        else:
            if kwargs.get("token_type_ids", None) is not None:
                kwargs["token_type_ids"] = torch.cat(
                    (
                        torch.zeros(batch_size, peft_config.num_virtual_tokens).to(self.device),
                        kwargs["token_type_ids"],
                    ),
                    dim=1,
                ).long()
            if inputs_embeds is None:
                inputs_embeds = self.word_embeddings(input_ids)
            prompts = self.get_prompt(batch_size=batch_size)
            prompts = prompts.to(inputs_embeds.dtype)
            inputs_embeds = torch.cat((prompts, inputs_embeds), dim=1)
            return self.base_model(inputs_embeds=inputs_embeds, **kwargs)

    def _prefix_tuning_forward(
        self,
        input_ids=None,
        attention_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs,
    ):
        batch_size = input_ids.shape[0]
        past_key_values = self.get_prompt(batch_size)
        fwd_params = list(inspect.signature(self.base_model.forward).parameters.keys())
        kwargs.update(
            {
                "input_ids": input_ids,
                "attention_mask": attention_mask,
                "inputs_embeds": inputs_embeds,
                "output_attentions": output_attentions,
                "output_hidden_states": output_hidden_states,
                "return_dict": return_dict,
                "past_key_values": past_key_values,
            }
        )
        if "past_key_values" in fwd_params:
            return self.base_model(labels=labels, **kwargs)
        else:
            transformer_backbone_name = self.base_model.get_submodule(self.transformer_backbone_name)
            fwd_params = list(inspect.signature(transformer_backbone_name.forward).parameters.keys())
            if "past_key_values" not in fwd_params:
                raise ValueError("Model does not support past key values which are required for prefix tuning.")
            outputs = transformer_backbone_name(**kwargs)
            pooled_output = outputs[1] if len(outputs) > 1 else outputs[0]
            if "dropout" in [name for name, _ in list(self.base_model.named_children())]:
                pooled_output = self.base_model.dropout(pooled_output)
            logits = self.base_model.get_submodule(self.cls_layer_name)(pooled_output)

            loss = None
            if labels is not None:
                if self.config.problem_type is None:
                    if self.base_model.num_labels == 1:
                        self.config.problem_type = "regression"
                    elif self.base_model.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                        self.config.problem_type = "single_label_classification"
                    else:
                        self.config.problem_type = "multi_label_classification"

                if self.config.problem_type == "regression":
                    loss_fct = MSELoss()
                    if self.base_model.num_labels == 1:
                        loss = loss_fct(logits.squeeze(), labels.squeeze())
                    else:
                        loss = loss_fct(logits, labels)
                elif self.config.problem_type == "single_label_classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, self.base_model.num_labels), labels.view(-1))
                elif self.config.problem_type == "multi_label_classification":
                    loss_fct = BCEWithLogitsLoss()
                    loss = loss_fct(logits, labels)
            if not return_dict:
                output = (logits,) + outputs[2:]
                return ((loss,) + output) if loss is not None else output

            return SequenceClassifierOutput(
                loss=loss,
                logits=logits,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )