Spaces:
sonalkum
/
Running on Zero

File size: 9,103 Bytes
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy

import torch


# needed for prefix-tuning of bloom model
def bloom_model_postprocess_past_key_value(past_key_values):
    past_key_values = torch.cat(past_key_values)
    total_layers, batch_size, num_attention_heads, num_virtual_tokens, head_dim = past_key_values.shape
    keys = past_key_values[: total_layers // 2]
    keys = keys.transpose(2, 3).reshape(
        total_layers // 2, batch_size * num_attention_heads, head_dim, num_virtual_tokens
    )
    values = past_key_values[total_layers // 2 :]
    values = values.reshape(total_layers // 2, batch_size * num_attention_heads, num_virtual_tokens, head_dim)

    return tuple(zip(keys, values))


def prepare_model_for_int8_training(
    model, output_embedding_layer_name="lm_head", use_gradient_checkpointing=True, layer_norm_names=["layer_norm"]
):
    r"""
    This method wraps the entire protocol for preparing a model before running a training. This includes:
        1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm
        head to fp32

    Args:
        model, (`transformers.PreTrainedModel`):
            The loaded model from `transformers`
    """
    loaded_in_8bit = getattr(model, "is_loaded_in_8bit", False)

    for name, param in model.named_parameters():
        # freeze base model's layers
        param.requires_grad = False

        if loaded_in_8bit:
            # cast layer norm in fp32 for stability for 8bit models
            if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
                param.data = param.data.to(torch.float32)

    if loaded_in_8bit and use_gradient_checkpointing:
        # For backward compatibility
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:

            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)

            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        # enable gradient checkpointing for memory efficiency
        model.gradient_checkpointing_enable()

    if hasattr(model, output_embedding_layer_name):
        output_embedding_layer = getattr(model, output_embedding_layer_name)
        input_dtype = output_embedding_layer.weight.dtype

        class CastOutputToFloat(torch.nn.Sequential):
            r"""
            Manually cast to the expected dtype of the lm_head as sometimes there is a final layer norm that is casted
            in fp32

            """

            def forward(self, x):
                return super().forward(x.to(input_dtype)).to(torch.float32)

        setattr(model, output_embedding_layer_name, CastOutputToFloat(output_embedding_layer))

    return model


# copied from transformers.models.bart.modeling_bart
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.

    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input ids
        pad_token_id (`int`): The id of the `padding` token.
        decoder_start_token_id (`int`): The id of the `start` token.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


class ModulesToSaveWrapper(torch.nn.Module):
    def __init__(self, module_to_save, adapter_name):
        super().__init__()
        self.original_module = module_to_save
        self.modules_to_save = torch.nn.ModuleDict({})
        self.update(adapter_name)
        self.active_adapter = adapter_name

    def update(self, adapter_name):
        self.modules_to_save.update(torch.nn.ModuleDict({adapter_name: copy.deepcopy(self.original_module)}))

    def forward(self, *args, **kwargs):
        if self.active_adapter not in self.modules_to_save:
            return self.original_module(*args, **kwargs)
        return self.modules_to_save[self.active_adapter](*args, **kwargs)


def _get_submodules(model, key):
    parent = model.get_submodule(".".join(key.split(".")[:-1]))
    target_name = key.split(".")[-1]
    target = model.get_submodule(key)
    return parent, target, target_name


def _freeze_adapter(model, adapter_name):
    for n, p in model.named_parameters():
        if adapter_name in n:
            p.requires_grad = False


def _set_trainable(model, adapter_name):
    key_list = [key for key, _ in model.named_modules()]
    for key in key_list:
        target_module_found = any(key.endswith(target_key) for target_key in model.modules_to_save)
        if target_module_found:
            parent, target, target_name = _get_submodules(model, key)
            if isinstance(target, ModulesToSaveWrapper):
                target.update(adapter_name)
            else:
                for param in target.parameters():
                    param.requires_grad = True
                setattr(parent, target_name, ModulesToSaveWrapper(target, adapter_name))


def _set_adapter(model, adapter_name):
    for module in model.modules():
        if isinstance(module, ModulesToSaveWrapper):
            module.active_adapter = adapter_name


def fsdp_auto_wrap_policy(model):
    import functools
    import os

    from accelerate import FullyShardedDataParallelPlugin
    from torch.distributed.fsdp.wrap import _or_policy, lambda_auto_wrap_policy, transformer_auto_wrap_policy

    from ..tuners import PrefixEncoder, PromptEmbedding, PromptEncoder

    def lambda_policy_fn(module):
        if (
            len(list(module.named_children())) == 0
            and getattr(module, "weight", None) is not None
            and module.weight.requires_grad
        ):
            return True
        return False

    lambda_policy = functools.partial(lambda_auto_wrap_policy, lambda_fn=lambda_policy_fn)
    transformer_wrap_policy = functools.partial(
        transformer_auto_wrap_policy,
        transformer_layer_cls=(
            PrefixEncoder,
            PromptEncoder,
            PromptEmbedding,
            FullyShardedDataParallelPlugin.get_module_class_from_name(
                model, os.environ.get("FSDP_TRANSFORMER_CLS_TO_WRAP", "")
            ),
        ),
    )

    auto_wrap_policy = functools.partial(_or_policy, policies=[lambda_policy, transformer_wrap_policy])
    return auto_wrap_policy


def transpose(weight, fan_in_fan_out):
    return weight.T if fan_in_fan_out else weight


TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING = {
    "t5": ["q", "v"],
    "mt5": ["q", "v"],
    "bart": ["q_proj", "v_proj"],
    "gpt2": ["c_attn"],
    "bloom": ["query_key_value"],
    "blip-2": ["q", "v", "q_proj", "v_proj"],
    "opt": ["q_proj", "v_proj"],
    "gptj": ["q_proj", "v_proj"],
    "gpt_neox": ["query_key_value"],
    "gpt_neo": ["q_proj", "v_proj"],
    "bert": ["query", "value"],
    "roberta": ["query", "value"],
    "xlm-roberta": ["query", "value"],
    "electra": ["query", "value"],
    "deberta-v2": ["query_proj", "value_proj"],
    "deberta": ["in_proj"],
    "layoutlm": ["query", "value"],
    "llama": ["q_proj", "v_proj"],
    "chatglm": ["query_key_value"],
}

TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING = {
    "t5": ["q", "k", "v", "o", "wi", "wo"],
    "mt5": ["q", "k", "v", "o", "wi_0", "wi_1", "wo"],
    "bart": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
    # "gpt2": ["c_attn"],
    # "bloom": ["query_key_value"],
    "opt": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
    # "gptj": ["q_proj", "v_proj"],
    # "gpt_neox": ["query_key_value"],
    # "gpt_neo": ["q_proj", "v_proj"],
    # "bert": ["query", "value"],
    "roberta": ["query", "key", "value", "dense"],
    # "xlm-roberta": ["query", "value"],
    # "electra": ["query", "value"],
    "deberta-v2": ["query_proj", "key_proj", "value_proj", "dense"],
    # "deberta": ["in_proj"],
    # "layoutlm": ["query", "value"],
}

TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING = {
    "bloom": bloom_model_postprocess_past_key_value,
}

WEIGHTS_NAME = "adapter_model.bin"
CONFIG_NAME = "adapter_config.json"