Spaces:
sonalkum
/
Running on Zero

File size: 5,661 Bytes
1e6d67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest

import pytest
import torch
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, WhisperForConditionalGeneration

from peft import LoraConfig, PeftModel, get_peft_model
from peft.import_utils import is_bnb_available

from .testing_utils import require_bitsandbytes, require_torch_gpu, require_torch_multi_gpu


if is_bnb_available():
    from peft.tuners.lora import Linear8bitLt


@require_torch_gpu
class PeftGPUCommonTests(unittest.TestCase):
    r"""
    A common tester to run common operations that are performed on GPU such as generation, loading in 8bit, etc.
    """

    def setUp(self):
        self.seq2seq_model_id = "google/flan-t5-base"
        self.causal_lm_model_id = "facebook/opt-350m"
        self.audio_model_id = "openai/whisper-large"
        self.device = torch.device("cuda:0")

    def tearDown(self):
        r"""
        Efficient mechanism to free GPU memory after each test. Based on
        https://github.com/huggingface/transformers/issues/21094
        """
        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    @require_bitsandbytes
    def test_lora_bnb_quantization(self):
        r"""
        Test that tests if the 8bit quantization using LoRA works as expected
        """
        whisper_8bit = WhisperForConditionalGeneration.from_pretrained(
            self.audio_model_id,
            device_map="auto",
            load_in_8bit=True,
        )

        opt_8bit = AutoModelForCausalLM.from_pretrained(
            self.causal_lm_model_id,
            device_map="auto",
            load_in_8bit=True,
        )

        flan_8bit = AutoModelForSeq2SeqLM.from_pretrained(
            self.seq2seq_model_id,
            device_map="auto",
            load_in_8bit=True,
        )

        flan_lora_config = LoraConfig(
            r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM"
        )

        opt_lora_config = LoraConfig(
            r=16,
            lora_alpha=32,
            target_modules=["q_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )

        config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none")

        flan_8bit = get_peft_model(flan_8bit, flan_lora_config)
        self.assertTrue(isinstance(flan_8bit.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear8bitLt))

        opt_8bit = get_peft_model(opt_8bit, opt_lora_config)
        self.assertTrue(isinstance(opt_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear8bitLt))

        whisper_8bit = get_peft_model(whisper_8bit, config)
        self.assertTrue(
            isinstance(whisper_8bit.base_model.model.model.decoder.layers[0].self_attn.v_proj, Linear8bitLt)
        )

    @pytest.mark.multi_gpu_tests
    @require_torch_multi_gpu
    def test_lora_causal_lm_mutli_gpu_inference(self):
        r"""
        Test if LORA can be used for inference on multiple GPUs.
        """
        lora_config = LoraConfig(
            r=16,
            lora_alpha=32,
            target_modules=["q_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM",
        )

        model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id, device_map="balanced")
        tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)

        self.assertEqual(set(model.hf_device_map.values()), {0, 1})

        model = get_peft_model(model, lora_config)
        self.assertTrue(isinstance(model, PeftModel))

        dummy_input = "This is a dummy input:"
        input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device)

        # this should work without any problem
        _ = model.generate(input_ids=input_ids)

    @require_torch_multi_gpu
    @pytest.mark.multi_gpu_tests
    @require_bitsandbytes
    def test_lora_seq2seq_lm_mutli_gpu_inference(self):
        r"""
        Test if LORA can be used for inference on multiple GPUs - 8bit version.
        """
        lora_config = LoraConfig(
            r=16, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.05, bias="none", task_type="SEQ_2_SEQ_LM"
        )

        model = AutoModelForSeq2SeqLM.from_pretrained(self.seq2seq_model_id, device_map="balanced", load_in_8bit=True)
        tokenizer = AutoTokenizer.from_pretrained(self.seq2seq_model_id)

        self.assertEqual(set(model.hf_device_map.values()), {0, 1})

        model = get_peft_model(model, lora_config)
        self.assertTrue(isinstance(model, PeftModel))
        self.assertTrue(isinstance(model.base_model.model.encoder.block[0].layer[0].SelfAttention.q, Linear8bitLt))

        dummy_input = "This is a dummy input:"
        input_ids = tokenizer(dummy_input, return_tensors="pt").input_ids.to(self.device)

        # this should work without any problem
        _ = model.generate(input_ids=input_ids)