File size: 17,394 Bytes
1e6d67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Semantic segmentation using LoRA
This guide demonstrates how to use LoRA, a low-rank approximation technique, to finetune a SegFormer model variant for semantic segmentation.
By using LoRA from 🤗 PEFT, we can reduce the number of trainable parameters in the SegFormer model to only 14% of the original trainable parameters.
LoRA achieves this reduction by adding low-rank "update matrices" to specific blocks of the model, such as the attention
blocks. During fine-tuning, only these matrices are trained, while the original model parameters are left unchanged.
At inference time, the update matrices are merged with the original model parameters to produce the final classification result.
For more information on LoRA, please refer to the [original LoRA paper](https://arxiv.org/abs/2106.09685).
## Install dependencies
Install the libraries required for model training:
```bash
!pip install transformers accelerate evaluate datasets loralib peft -q
```
## Authenticate to share your model
To share the finetuned model with the community at the end of the training, authenticate using your 🤗 token.
You can obtain your token from your [account settings](https://huggingface.co/settings/token).
```python
from huggingface_hub import notebook_login
notebook_login()
```
## Load a dataset
To ensure that this example runs within a reasonable time frame, here we are limiting the number of instances from the training
set of the [SceneParse150 dataset](https://huggingface.co/datasets/scene_parse_150) to 150.
```python
from datasets import load_dataset
ds = load_dataset("scene_parse_150", split="train[:150]")
```
Next, split the dataset into train and test sets.
```python
ds = ds.train_test_split(test_size=0.1)
train_ds = ds["train"]
test_ds = ds["test"]
```
## Prepare label maps
Create a dictionary that maps a label id to a label class, which will be useful when setting up the model later:
* `label2id`: maps the semantic classes of the dataset to integer ids.
* `id2label`: maps integer ids back to the semantic classes.
```python
import json
from huggingface_hub import cached_download, hf_hub_url
repo_id = "huggingface/label-files"
filename = "ade20k-id2label.json"
id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
id2label = {int(k): v for k, v in id2label.items()}
label2id = {v: k for k, v in id2label.items()}
num_labels = len(id2label)
```
## Prepare datasets for training and evaluation
Next, load the SegFormer image processor to prepare the images and annotations for the model. This dataset uses the
zero-index as the background class, so make sure to set `reduce_labels=True` to subtract one from all labels since the
background class is not among the 150 classes.
```python
from transformers import AutoImageProcessor
checkpoint = "nvidia/mit-b0"
image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True)
```
Add a function to apply data augmentation to the images, so that the model is more robust against overfitting. Here we use the
[ColorJitter](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) function from
[torchvision](https://pytorch.org/vision/stable/index.html) to randomly change the color properties of an image.
```python
from torchvision.transforms import ColorJitter
jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
```
Add a function to handle grayscale images and ensure that each input image has three color channels, regardless of
whether it was originally grayscale or RGB. The function converts RGB images to array as is, and for grayscale images
that have only one color channel, the function replicates the same channel three times using `np.tile()` before converting
the image into an array.
```python
import numpy as np
def handle_grayscale_image(image):
np_image = np.array(image)
if np_image.ndim == 2:
tiled_image = np.tile(np.expand_dims(np_image, -1), 3)
return Image.fromarray(tiled_image)
else:
return Image.fromarray(np_image)
```
Finally, combine everything in two functions that you'll use to transform training and validation data. The two functions
are similar except data augmentation is applied only to the training data.
```python
from PIL import Image
def train_transforms(example_batch):
images = [jitter(handle_grayscale_image(x)) for x in example_batch["image"]]
labels = [x for x in example_batch["annotation"]]
inputs = image_processor(images, labels)
return inputs
def val_transforms(example_batch):
images = [handle_grayscale_image(x) for x in example_batch["image"]]
labels = [x for x in example_batch["annotation"]]
inputs = image_processor(images, labels)
return inputs
```
To apply the preprocessing functions over the entire dataset, use the 🤗 Datasets `set_transform` function:
```python
train_ds.set_transform(train_transforms)
test_ds.set_transform(val_transforms)
```
## Create evaluation function
Including a metric during training is helpful for evaluating your model's performance. You can load an evaluation
method with the [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, use
the [mean Intersection over Union (IoU)](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 🤗 Evaluate
[quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```python
import torch
from torch import nn
import evaluate
metric = evaluate.load("mean_iou")
def compute_metrics(eval_pred):
with torch.no_grad():
logits, labels = eval_pred
logits_tensor = torch.from_numpy(logits)
logits_tensor = nn.functional.interpolate(
logits_tensor,
size=labels.shape[-2:],
mode="bilinear",
align_corners=False,
).argmax(dim=1)
pred_labels = logits_tensor.detach().cpu().numpy()
# currently using _compute instead of compute
# see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576
metrics = metric._compute(
predictions=pred_labels,
references=labels,
num_labels=len(id2label),
ignore_index=0,
reduce_labels=image_processor.reduce_labels,
)
per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
per_category_iou = metrics.pop("per_category_iou").tolist()
metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
return metrics
```
## Load a base model
Before loading a base model, let's define a helper function to check the total number of parameters a model has, as well
as how many of them are trainable.
```python
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}"
)
```
Choose a base model checkpoint. For this example, we use the [SegFormer B0 variant](https://huggingface.co/nvidia/mit-b0).
In addition to the checkpoint, pass the `label2id` and `id2label` dictionaries to let the `AutoModelForSemanticSegmentation` class know that we're
interested in a custom base model where the decoder head should be randomly initialized using the classes from the custom dataset.
```python
from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer
model = AutoModelForSemanticSegmentation.from_pretrained(
checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True
)
print_trainable_parameters(model)
```
At this point you can check with the `print_trainable_parameters` helper function that all 100% parameters in the base
model (aka `model`) are trainable.
## Wrap the base model as a PeftModel for LoRA training
To leverage the LoRa method, you need to wrap the base model as a `PeftModel`. This involves two steps:
1. Defining LoRa configuration with `LoraConfig`
2. Wrapping the original `model` with `get_peft_model()` using the config defined in the step above.
```python
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=32,
lora_alpha=32,
target_modules=["query", "value"],
lora_dropout=0.1,
bias="lora_only",
modules_to_save=["decode_head"],
)
lora_model = get_peft_model(model, config)
print_trainable_parameters(lora_model)
```
Let's review the `LoraConfig`. To enable LoRA technique, we must define the target modules within `LoraConfig` so that
`PeftModel` can update the necessary matrices. Specifically, we want to target the `query` and `value` matrices in the
attention blocks of the base model. These matrices are identified by their respective names, "query" and "value".
Therefore, we should specify these names in the `target_modules` argument of `LoraConfig`.
After we wrap our base model `model` with `PeftModel` along with the config, we get
a new model where only the LoRA parameters are trainable (so-called "update matrices") while the pre-trained parameters
are kept frozen. These include the parameters of the randomly initialized classifier parameters too. This is NOT we want
when fine-tuning the base model on our custom dataset. To ensure that the classifier parameters are also trained, we
specify `modules_to_save`. This also ensures that these modules are serialized alongside the LoRA trainable parameters
when using utilities like `save_pretrained()` and `push_to_hub()`.
In addition to specifying the `target_modules` within `LoraConfig`, we also need to specify the `modules_to_save`. When
we wrap our base model with `PeftModel` and pass the configuration, we obtain a new model in which only the LoRA parameters
are trainable, while the pre-trained parameters and the randomly initialized classifier parameters are kept frozen.
However, we do want to train the classifier parameters. By specifying the `modules_to_save` argument, we ensure that the
classifier parameters are also trainable, and they will be serialized alongside the LoRA trainable parameters when we
use utility functions like `save_pretrained()` and `push_to_hub()`.
Let's review the rest of the parameters:
- `r`: The dimension used by the LoRA update matrices.
- `alpha`: Scaling factor.
- `bias`: Specifies if the `bias` parameters should be trained. `None` denotes none of the `bias` parameters will be trained.
When all is configured, and the base model is wrapped, the `print_trainable_parameters` helper function lets us explore
the number of trainable parameters. Since we're interested in performing **parameter-efficient fine-tuning**,
we should expect to see a lower number of trainable parameters from the `lora_model` in comparison to the original `model`
which is indeed the case here.
You can also manually verify what modules are trainable in the `lora_model`.
```python
for name, param in lora_model.named_parameters():
if param.requires_grad:
print(name, param.shape)
```
This confirms that only the LoRA parameters appended to the attention blocks and the `decode_head` parameters are trainable.
## Train the model
Start by defining your training hyperparameters in `TrainingArguments`. You can change the values of most parameters however
you prefer. Make sure to set `remove_unused_columns=False`, otherwise the image column will be dropped, and it's required here.
The only other required parameter is `output_dir` which specifies where to save your model.
At the end of each epoch, the `Trainer` will evaluate the IoU metric and save the training checkpoint.
Note that this example is meant to walk you through the workflow when using PEFT for semantic segmentation. We didn't
perform extensive hyperparameter tuning to achieve optimal results.
```python
model_name = checkpoint.split("/")[-1]
training_args = TrainingArguments(
output_dir=f"{model_name}-scene-parse-150-lora",
learning_rate=5e-4,
num_train_epochs=50,
per_device_train_batch_size=4,
per_device_eval_batch_size=2,
save_total_limit=3,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_steps=5,
remove_unused_columns=False,
push_to_hub=True,
label_names=["labels"],
)
```
Pass the training arguments to `Trainer` along with the model, dataset, and `compute_metrics` function.
Call `train()` to finetune your model.
```python
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=train_ds,
eval_dataset=test_ds,
compute_metrics=compute_metrics,
)
trainer.train()
```
## Save the model and run inference
Use the `save_pretrained()` method of the `lora_model` to save the *LoRA-only parameters* locally.
Alternatively, use the `push_to_hub()` method to upload these parameters directly to the Hugging Face Hub
(as shown in the [Image classification using LoRA](image_classification_lora) task guide).
```python
model_id = "segformer-scene-parse-150-lora"
lora_model.save_pretrained(model_id)
```
We can see that the LoRA-only parameters are just **2.2 MB in size**! This greatly improves the portability when using very large models.
```bash
!ls -lh {model_id}
total 2.2M
-rw-r--r-- 1 root root 369 Feb 8 03:09 adapter_config.json
-rw-r--r-- 1 root root 2.2M Feb 8 03:09 adapter_model.bin
```
Let's now prepare an `inference_model` and run inference.
```python
from peft import PeftConfig
config = PeftConfig.from_pretrained(model_id)
model = AutoModelForSemanticSegmentation.from_pretrained(
checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True
)
inference_model = PeftModel.from_pretrained(model, model_id)
```
Get an image:
```python
import requests
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png"
image = Image.open(requests.get(url, stream=True).raw)
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="photo of a room"/>
</div>
Preprocess the image to prepare for inference.
```python
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
```
Run inference with the encoded image.
```python
with torch.no_grad():
outputs = inference_model(pixel_values=encoding.pixel_values)
logits = outputs.logits
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
```
Next, visualize the results. We need a color palette for this. Here, we use ade_palette(). As it is a long array, so
we don't include it in this guide, please copy it from [the TensorFlow Model Garden repository](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51).
```python
import matplotlib.pyplot as plt
color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[pred_seg == label, :] = color
color_seg = color_seg[..., ::-1] # convert to BGR
img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map
img = img.astype(np.uint8)
plt.figure(figsize=(15, 10))
plt.imshow(img)
plt.show()
```
As you can see, the results are far from perfect, however, this example is designed to illustrate the end-to-end workflow of
fine-tuning a semantic segmentation model with LoRa technique, and is not aiming to achieve state-of-the-art
results. The results you see here are the same as you would get if you performed full fine-tuning on the same setup (same
model variant, same dataset, same training schedule, etc.), except LoRA allows to achieve them with a fraction of total
trainable parameters and in less time.
If you wish to use this example and improve the results, here are some things that you can try:
* Increase the number of training samples.
* Try a larger SegFormer model variant (explore available model variants on the [Hugging Face Hub](https://huggingface.co/models?search=segformer)).
* Try different values for the arguments available in `LoraConfig`.
* Tune the learning rate and batch size.
|