Spaces:
sonalkum
/
Running on Zero

File size: 6,694 Bytes
1e6d67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
from typing import Union

import numpy as np
import requests

from ..utils import add_end_docstrings, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline


if is_torch_available():
    from ..models.auto.modeling_auto import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING

logger = logging.get_logger(__name__)


def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
    """
    Helper function to read an audio file through ffmpeg.
    """
    ar = f"{sampling_rate}"
    ac = "1"
    format_for_conversion = "f32le"
    ffmpeg_command = [
        "ffmpeg",
        "-i",
        "pipe:0",
        "-ac",
        ac,
        "-ar",
        ar,
        "-f",
        format_for_conversion,
        "-hide_banner",
        "-loglevel",
        "quiet",
        "pipe:1",
    ]

    try:
        ffmpeg_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE)
    except FileNotFoundError:
        raise ValueError("ffmpeg was not found but is required to load audio files from filename")
    output_stream = ffmpeg_process.communicate(bpayload)
    out_bytes = output_stream[0]

    audio = np.frombuffer(out_bytes, np.float32)
    if audio.shape[0] == 0:
        raise ValueError("Malformed soundfile")
    return audio


@add_end_docstrings(PIPELINE_INIT_ARGS)
class AudioClassificationPipeline(Pipeline):
    """
    Audio classification pipeline using any `AutoModelForAudioClassification`. This pipeline predicts the class of a
    raw waveform or an audio file. In case of an audio file, ffmpeg should be installed to support multiple audio
    formats.

    Example:

    ```python
    >>> from transformers import pipeline

    >>> classifier = pipeline(model="superb/wav2vec2-base-superb-ks")
    >>> classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/1.flac")
    [{'score': 0.997, 'label': '_unknown_'}, {'score': 0.002, 'label': 'left'}, {'score': 0.0, 'label': 'yes'}, {'score': 0.0, 'label': 'down'}, {'score': 0.0, 'label': 'stop'}]
    ```

    Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)


    This pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"audio-classification"`.

    See the list of available models on
    [huggingface.co/models](https://huggingface.co/models?filter=audio-classification).
    """

    def __init__(self, *args, **kwargs):
        # Default, might be overriden by the model.config.
        kwargs["top_k"] = 5
        super().__init__(*args, **kwargs)

        if self.framework != "pt":
            raise ValueError(f"The {self.__class__} is only available in PyTorch.")

        self.check_model_type(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING)

    def __call__(
        self,
        inputs: Union[np.ndarray, bytes, str],
        **kwargs,
    ):
        """
        Classify the sequence(s) given as inputs. See the [`AutomaticSpeechRecognitionPipeline`] documentation for more
        information.

        Args:
            inputs (`np.ndarray` or `bytes` or `str`):
                The inputs is either a raw waveform (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
                at the correct sampling rate (no further check will be done) or a `str` that is the filename of the
                audio file, the file will be read at the correct sampling rate to get the waveform using *ffmpeg*. This
                requires *ffmpeg* to be installed on the system. If *inputs* is `bytes` it is supposed to be the
                content of an audio file and is interpreted by *ffmpeg* in the same way.
            top_k (`int`, *optional*, defaults to None):
                The number of top labels that will be returned by the pipeline. If the provided number is `None` or
                higher than the number of labels available in the model configuration, it will default to the number of
                labels.

        Return:
            A list of `dict` with the following keys:

            - **label** (`str`) -- The label predicted.
            - **score** (`float`) -- The corresponding probability.
        """
        return super().__call__(inputs, **kwargs)

    def _sanitize_parameters(self, top_k=None, **kwargs):
        # No parameters on this pipeline right now
        postprocess_params = {}
        if top_k is not None:
            if top_k > self.model.config.num_labels:
                top_k = self.model.config.num_labels
            postprocess_params["top_k"] = top_k
        return {}, {}, postprocess_params

    def preprocess(self, inputs):
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()

        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)

        if not isinstance(inputs, np.ndarray):
            raise ValueError("We expect a numpy ndarray as input")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")

        processed = self.feature_extractor(
            inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
        )
        return processed

    def _forward(self, model_inputs):
        model_outputs = self.model(**model_inputs)
        return model_outputs

    def postprocess(self, model_outputs, top_k=5):
        probs = model_outputs.logits[0].softmax(-1)
        scores, ids = probs.topk(top_k)

        scores = scores.tolist()
        ids = ids.tolist()

        labels = [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)]

        return labels