Spaces:
Runtime error
Runtime error
Commit
·
77ab908
1
Parent(s):
eacf514
format app.py
Browse files
app.py
CHANGED
@@ -1,117 +1,58 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import argilla as rg
|
3 |
-
import pandas as pd
|
4 |
import os
|
5 |
import time
|
6 |
from collections import defaultdict
|
7 |
-
from fastapi import FastAPI
|
8 |
from functools import lru_cache
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
client = rg.Argilla(
|
11 |
-
api_url=os.getenv("ARGILLA_API_URL", ""),
|
12 |
-
api_key=os.getenv("ARGILLA_API_KEY", "")
|
13 |
)
|
14 |
|
15 |
countries = {
|
16 |
-
|
17 |
-
"iso": "
|
18 |
-
"emoji": "
|
19 |
-
|
20 |
-
|
21 |
-
"iso": "
|
22 |
-
"emoji": "
|
23 |
-
|
24 |
-
|
25 |
-
"iso": "
|
26 |
-
"emoji": "
|
27 |
-
|
28 |
-
|
29 |
-
"iso": "
|
30 |
-
"emoji": "
|
31 |
-
|
32 |
-
|
33 |
-
"iso": "
|
34 |
-
"emoji": "
|
35 |
-
|
36 |
-
"Cuba": {
|
37 |
-
"iso": "CUB",
|
38 |
-
"emoji": "🇨🇺"
|
39 |
-
},
|
40 |
-
"Ecuador": {
|
41 |
-
"iso": "ECU",
|
42 |
-
"emoji": "🇪🇨"
|
43 |
-
},
|
44 |
-
"El Salvador": {
|
45 |
-
"iso": "SLV",
|
46 |
-
"emoji": "🇸🇻"
|
47 |
-
},
|
48 |
-
"España": {
|
49 |
-
"iso": "ESP",
|
50 |
-
"emoji": "🇪🇸"
|
51 |
-
},
|
52 |
-
"Guatemala": {
|
53 |
-
"iso": "GTM",
|
54 |
-
"emoji": "🇬🇹"
|
55 |
-
},
|
56 |
-
"Honduras": {
|
57 |
-
"iso": "HND",
|
58 |
-
"emoji": "🇭🇳"
|
59 |
-
},
|
60 |
-
"México": {
|
61 |
-
"iso": "MEX",
|
62 |
-
"emoji": "🇲🇽"
|
63 |
-
},
|
64 |
-
"Nicaragua": {
|
65 |
-
"iso": "NIC",
|
66 |
-
"emoji": "🇳🇮"
|
67 |
-
},
|
68 |
-
"Panamá": {
|
69 |
-
"iso": "PAN",
|
70 |
-
"emoji": "🇵🇦"
|
71 |
-
},
|
72 |
-
"Paraguay": {
|
73 |
-
"iso": "PRY",
|
74 |
-
"emoji": "🇵🇾"
|
75 |
-
},
|
76 |
-
"Perú": {
|
77 |
-
"iso": "PER",
|
78 |
-
"emoji": "🇵🇪"
|
79 |
-
},
|
80 |
-
"Puerto Rico": {
|
81 |
-
"iso": "PRI",
|
82 |
-
"emoji": "🇵🇷"
|
83 |
-
},
|
84 |
-
"República Dominicana": {
|
85 |
-
"iso": "DOM",
|
86 |
-
"emoji": "🇩🇴"
|
87 |
-
},
|
88 |
-
"Uruguay": {
|
89 |
-
"iso": "URY",
|
90 |
-
"emoji": "🇺🇾"
|
91 |
-
},
|
92 |
-
"Venezuela": {
|
93 |
-
"iso": "VEN",
|
94 |
-
"emoji": "🇻🇪"
|
95 |
-
}
|
96 |
}
|
97 |
|
|
|
98 |
def get_blend_es_data():
|
99 |
data = []
|
100 |
-
|
101 |
for country in countries.keys():
|
102 |
iso = countries[country]["iso"]
|
103 |
emoji = countries[country]["emoji"]
|
104 |
-
|
105 |
dataset_name = f"{emoji} {country} - {iso} - Responder"
|
106 |
-
|
107 |
try:
|
108 |
print(f"Processing dataset: {dataset_name}")
|
109 |
dataset = client.datasets(dataset_name)
|
110 |
records = list(dataset.records(with_responses=True))
|
111 |
-
|
112 |
dataset_contributions = defaultdict(int)
|
113 |
user_mapping = {}
|
114 |
-
|
115 |
for record in records:
|
116 |
record_dict = record.to_dict()
|
117 |
if "answer_1" in record_dict["responses"]:
|
@@ -119,7 +60,7 @@ def get_blend_es_data():
|
|
119 |
if answer["user_id"]:
|
120 |
user_id = answer["user_id"]
|
121 |
dataset_contributions[user_id] += 1
|
122 |
-
|
123 |
if user_id not in user_mapping:
|
124 |
try:
|
125 |
user = client.users(id=user_id)
|
@@ -127,44 +68,45 @@ def get_blend_es_data():
|
|
127 |
except Exception as e:
|
128 |
print(f"Error getting username for {user_id}: {e}")
|
129 |
user_mapping[user_id] = f"User-{user_id[:8]}"
|
130 |
-
|
131 |
for user_id, count in dataset_contributions.items():
|
132 |
username = user_mapping.get(user_id, f"User-{user_id[:8]}")
|
133 |
-
data.append(
|
134 |
-
"source": "blend-es",
|
135 |
-
|
136 |
-
|
137 |
-
})
|
138 |
-
|
139 |
except Exception as e:
|
140 |
print(f"Error processing dataset {dataset_name}: {e}")
|
141 |
-
|
142 |
return data
|
143 |
|
|
|
144 |
def get_include_data():
|
145 |
data = []
|
146 |
try:
|
147 |
if os.path.exists("include.csv"):
|
148 |
include_df = pd.read_csv("include.csv")
|
149 |
-
if
|
|
|
|
|
|
|
150 |
discord_users = defaultdict(int)
|
151 |
for _, row in include_df.iterrows():
|
152 |
username = row["Nombre en Discord / username"][1:]
|
153 |
questions = row["Número de preguntas / number of questions"]
|
154 |
if pd.notna(username) and pd.notna(questions):
|
155 |
discord_users[username.lower()] += int(questions)
|
156 |
-
|
157 |
for username, count in discord_users.items():
|
158 |
-
data.append(
|
159 |
-
"source": "include",
|
160 |
-
|
161 |
-
"count": count
|
162 |
-
})
|
163 |
except Exception as e:
|
164 |
print(f"Error loading include.csv: {e}")
|
165 |
-
|
166 |
return data
|
167 |
|
|
|
168 |
def get_mail_to_username_mapping():
|
169 |
mail_to_discord = {}
|
170 |
try:
|
@@ -178,13 +120,14 @@ def get_mail_to_username_mapping():
|
|
178 |
mail_to_discord[mail.lower()] = discord.lower()
|
179 |
except Exception as e:
|
180 |
print(f"Error loading mail_to_username.csv: {e}")
|
181 |
-
|
182 |
return mail_to_discord
|
183 |
|
|
|
184 |
def get_estereotipos_data():
|
185 |
data = []
|
186 |
mail_to_discord = get_mail_to_username_mapping()
|
187 |
-
|
188 |
try:
|
189 |
if os.path.exists("token_id_counts.csv"):
|
190 |
counts_df = pd.read_csv("token_id_counts.csv")
|
@@ -195,79 +138,85 @@ def get_estereotipos_data():
|
|
195 |
count = row["count"]
|
196 |
if pd.notna(mail) and pd.notna(count):
|
197 |
mail_counts[mail.lower()] += int(count)
|
198 |
-
|
199 |
for mail, count in mail_counts.items():
|
200 |
username = mail_to_discord.get(mail.lower(), "")
|
201 |
if not username:
|
202 |
-
username = mail.split(
|
203 |
-
|
204 |
-
data.append(
|
205 |
-
"source": "estereotipos",
|
206 |
-
|
207 |
-
"count": count
|
208 |
-
})
|
209 |
except Exception as e:
|
210 |
print(f"Error loading estereotipos data: {e}")
|
211 |
-
|
212 |
return data
|
213 |
|
|
|
214 |
def get_arena_data():
|
215 |
data = []
|
216 |
mail_to_discord = get_mail_to_username_mapping()
|
217 |
-
|
218 |
try:
|
219 |
if os.path.exists("arena.json"):
|
220 |
import json
|
|
|
221 |
with open("arena.json", "r", encoding="utf-8") as f:
|
222 |
arena_data = json.load(f)
|
223 |
-
|
224 |
mail_counts = defaultdict(int)
|
225 |
-
|
226 |
for country, conversations in arena_data.items():
|
227 |
for conversation in conversations:
|
228 |
if "username" in conversation:
|
229 |
mail = conversation["username"]
|
230 |
if mail:
|
231 |
mail_counts[mail.lower()] += 1
|
232 |
-
|
233 |
for mail, count in mail_counts.items():
|
234 |
username = mail_to_discord.get(mail.lower(), "")
|
235 |
if not username:
|
236 |
-
username = mail.split(
|
237 |
-
|
238 |
-
data.append({
|
239 |
-
"source": "arena",
|
240 |
-
"username": username,
|
241 |
-
"count": count
|
242 |
-
})
|
243 |
except Exception as e:
|
244 |
print(f"Error loading arena data: {e}")
|
245 |
-
|
246 |
return data
|
247 |
|
|
|
248 |
@lru_cache(maxsize=32)
|
249 |
def get_user_contributions_cached(cache_buster: int):
|
250 |
return consolidate_all_data()
|
251 |
|
|
|
252 |
def consolidate_all_data():
|
253 |
all_data = []
|
254 |
all_data.extend(get_blend_es_data())
|
255 |
all_data.extend(get_include_data())
|
256 |
all_data.extend(get_estereotipos_data())
|
257 |
all_data.extend(get_arena_data())
|
258 |
-
|
259 |
-
user_contributions = defaultdict(
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
for item in all_data:
|
262 |
source = item["source"]
|
263 |
username = item["username"]
|
264 |
count = item["count"]
|
265 |
-
|
266 |
user_key = username.lower()
|
267 |
-
|
268 |
if not user_contributions[user_key]["username"]:
|
269 |
user_contributions[user_key]["username"] = username
|
270 |
-
|
271 |
if source == "blend-es":
|
272 |
user_contributions[user_key]["blend_es"] += count
|
273 |
elif source == "include":
|
@@ -276,36 +225,40 @@ def consolidate_all_data():
|
|
276 |
user_contributions[user_key]["estereotipos"] += count
|
277 |
elif source == "arena":
|
278 |
user_contributions[user_key]["arena"] += count
|
279 |
-
|
280 |
rows = []
|
281 |
for _, data in user_contributions.items():
|
282 |
-
total =
|
|
|
|
|
283 |
row = {
|
284 |
"Username": data["username"],
|
285 |
"Total": total,
|
286 |
"Blend-es": data["blend_es"],
|
287 |
"INCLUDE": data["include"],
|
288 |
"Estereotipos": data["estereotipos"],
|
289 |
-
"Arena": data["arena"]
|
290 |
}
|
291 |
rows.append(row)
|
292 |
-
|
293 |
df = pd.DataFrame(rows)
|
294 |
-
|
295 |
if not df.empty:
|
296 |
df = df.sort_values("Total", ascending=False)
|
297 |
-
|
298 |
return df
|
299 |
|
|
|
300 |
app = FastAPI()
|
301 |
|
302 |
last_update_time = 0
|
303 |
cached_data = None
|
304 |
|
|
|
305 |
def create_leaderboard_ui():
|
306 |
global cached_data, last_update_time
|
307 |
current_time = time.time()
|
308 |
-
|
309 |
if cached_data is not None and current_time - last_update_time < 300:
|
310 |
df = cached_data
|
311 |
else:
|
@@ -313,15 +266,15 @@ def create_leaderboard_ui():
|
|
313 |
df = get_user_contributions_cached(cache_buster)
|
314 |
cached_data = df
|
315 |
last_update_time = current_time
|
316 |
-
|
317 |
if not df.empty:
|
318 |
df = df.reset_index(drop=True)
|
319 |
df.index = df.index + 1
|
320 |
df = df.rename_axis("Rank")
|
321 |
df = df.reset_index()
|
322 |
-
|
323 |
df_html = df.to_html(classes="leaderboard-table", border=0, index=False)
|
324 |
-
|
325 |
styled_html = f"""
|
326 |
<div style="margin: 20px 0;">
|
327 |
<p>Última Actualización: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(last_update_time))}</p>
|
@@ -390,18 +343,20 @@ def create_leaderboard_ui():
|
|
390 |
"""
|
391 |
return styled_html
|
392 |
|
|
|
393 |
def refresh_data():
|
394 |
global cached_data, last_update_time
|
395 |
cached_data = None
|
396 |
last_update_time = 0
|
397 |
return create_leaderboard_ui()
|
398 |
|
|
|
399 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
400 |
with gr.Column(scale=1):
|
401 |
gr.Markdown("""# 🏆 Hackaton Leaderboard""")
|
402 |
-
|
403 |
leaderboard_html = gr.HTML(create_leaderboard_ui)
|
404 |
-
|
405 |
refresh_btn = gr.Button("🔄 Actualizar Datos", variant="primary")
|
406 |
refresh_btn.click(fn=refresh_data, outputs=leaderboard_html)
|
407 |
|
@@ -409,4 +364,5 @@ gr.mount_gradio_app(app, demo, path="/")
|
|
409 |
|
410 |
if __name__ == "__main__":
|
411 |
import uvicorn
|
412 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
from collections import defaultdict
|
|
|
4 |
from functools import lru_cache
|
5 |
|
6 |
+
import argilla as rg
|
7 |
+
import gradio as gr
|
8 |
+
import pandas as pd
|
9 |
+
from fastapi import FastAPI
|
10 |
+
|
11 |
client = rg.Argilla(
|
12 |
+
api_url=os.getenv("ARGILLA_API_URL", ""), api_key=os.getenv("ARGILLA_API_KEY", "")
|
|
|
13 |
)
|
14 |
|
15 |
countries = {
|
16 |
+
"Argentina": {"iso": "ARG", "emoji": "🇦🇷"},
|
17 |
+
"Bolivia": {"iso": "BOL", "emoji": "🇧🇴"},
|
18 |
+
"Chile": {"iso": "CHL", "emoji": "🇨🇱"},
|
19 |
+
"Colombia": {"iso": "COL", "emoji": "🇨🇴"},
|
20 |
+
"Costa Rica": {"iso": "CRI", "emoji": "🇨🇷"},
|
21 |
+
"Cuba": {"iso": "CUB", "emoji": "🇨🇺"},
|
22 |
+
"Ecuador": {"iso": "ECU", "emoji": "🇪🇨"},
|
23 |
+
"El Salvador": {"iso": "SLV", "emoji": "🇸🇻"},
|
24 |
+
"España": {"iso": "ESP", "emoji": "🇪🇸"},
|
25 |
+
"Guatemala": {"iso": "GTM", "emoji": "🇬🇹"},
|
26 |
+
"Honduras": {"iso": "HND", "emoji": "🇭🇳"},
|
27 |
+
"México": {"iso": "MEX", "emoji": "🇲🇽"},
|
28 |
+
"Nicaragua": {"iso": "NIC", "emoji": "🇳🇮"},
|
29 |
+
"Panamá": {"iso": "PAN", "emoji": "🇵🇦"},
|
30 |
+
"Paraguay": {"iso": "PRY", "emoji": "🇵🇾"},
|
31 |
+
"Perú": {"iso": "PER", "emoji": "🇵🇪"},
|
32 |
+
"Puerto Rico": {"iso": "PRI", "emoji": "🇵🇷"},
|
33 |
+
"República Dominicana": {"iso": "DOM", "emoji": "🇩🇴"},
|
34 |
+
"Uruguay": {"iso": "URY", "emoji": "🇺🇾"},
|
35 |
+
"Venezuela": {"iso": "VEN", "emoji": "🇻🇪"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
|
38 |
+
|
39 |
def get_blend_es_data():
|
40 |
data = []
|
41 |
+
|
42 |
for country in countries.keys():
|
43 |
iso = countries[country]["iso"]
|
44 |
emoji = countries[country]["emoji"]
|
45 |
+
|
46 |
dataset_name = f"{emoji} {country} - {iso} - Responder"
|
47 |
+
|
48 |
try:
|
49 |
print(f"Processing dataset: {dataset_name}")
|
50 |
dataset = client.datasets(dataset_name)
|
51 |
records = list(dataset.records(with_responses=True))
|
52 |
+
|
53 |
dataset_contributions = defaultdict(int)
|
54 |
user_mapping = {}
|
55 |
+
|
56 |
for record in records:
|
57 |
record_dict = record.to_dict()
|
58 |
if "answer_1" in record_dict["responses"]:
|
|
|
60 |
if answer["user_id"]:
|
61 |
user_id = answer["user_id"]
|
62 |
dataset_contributions[user_id] += 1
|
63 |
+
|
64 |
if user_id not in user_mapping:
|
65 |
try:
|
66 |
user = client.users(id=user_id)
|
|
|
68 |
except Exception as e:
|
69 |
print(f"Error getting username for {user_id}: {e}")
|
70 |
user_mapping[user_id] = f"User-{user_id[:8]}"
|
71 |
+
|
72 |
for user_id, count in dataset_contributions.items():
|
73 |
username = user_mapping.get(user_id, f"User-{user_id[:8]}")
|
74 |
+
data.append(
|
75 |
+
{"source": "blend-es", "username": username, "count": count}
|
76 |
+
)
|
77 |
+
|
|
|
|
|
78 |
except Exception as e:
|
79 |
print(f"Error processing dataset {dataset_name}: {e}")
|
80 |
+
|
81 |
return data
|
82 |
|
83 |
+
|
84 |
def get_include_data():
|
85 |
data = []
|
86 |
try:
|
87 |
if os.path.exists("include.csv"):
|
88 |
include_df = pd.read_csv("include.csv")
|
89 |
+
if (
|
90 |
+
"Nombre en Discord / username" in include_df.columns
|
91 |
+
and "Número de preguntas / number of questions" in include_df.columns
|
92 |
+
):
|
93 |
discord_users = defaultdict(int)
|
94 |
for _, row in include_df.iterrows():
|
95 |
username = row["Nombre en Discord / username"][1:]
|
96 |
questions = row["Número de preguntas / number of questions"]
|
97 |
if pd.notna(username) and pd.notna(questions):
|
98 |
discord_users[username.lower()] += int(questions)
|
99 |
+
|
100 |
for username, count in discord_users.items():
|
101 |
+
data.append(
|
102 |
+
{"source": "include", "username": username, "count": count}
|
103 |
+
)
|
|
|
|
|
104 |
except Exception as e:
|
105 |
print(f"Error loading include.csv: {e}")
|
106 |
+
|
107 |
return data
|
108 |
|
109 |
+
|
110 |
def get_mail_to_username_mapping():
|
111 |
mail_to_discord = {}
|
112 |
try:
|
|
|
120 |
mail_to_discord[mail.lower()] = discord.lower()
|
121 |
except Exception as e:
|
122 |
print(f"Error loading mail_to_username.csv: {e}")
|
123 |
+
|
124 |
return mail_to_discord
|
125 |
|
126 |
+
|
127 |
def get_estereotipos_data():
|
128 |
data = []
|
129 |
mail_to_discord = get_mail_to_username_mapping()
|
130 |
+
|
131 |
try:
|
132 |
if os.path.exists("token_id_counts.csv"):
|
133 |
counts_df = pd.read_csv("token_id_counts.csv")
|
|
|
138 |
count = row["count"]
|
139 |
if pd.notna(mail) and pd.notna(count):
|
140 |
mail_counts[mail.lower()] += int(count)
|
141 |
+
|
142 |
for mail, count in mail_counts.items():
|
143 |
username = mail_to_discord.get(mail.lower(), "")
|
144 |
if not username:
|
145 |
+
username = mail.split("@")[0] if "@" in mail else mail
|
146 |
+
|
147 |
+
data.append(
|
148 |
+
{"source": "estereotipos", "username": username, "count": count}
|
149 |
+
)
|
|
|
|
|
150 |
except Exception as e:
|
151 |
print(f"Error loading estereotipos data: {e}")
|
152 |
+
|
153 |
return data
|
154 |
|
155 |
+
|
156 |
def get_arena_data():
|
157 |
data = []
|
158 |
mail_to_discord = get_mail_to_username_mapping()
|
159 |
+
|
160 |
try:
|
161 |
if os.path.exists("arena.json"):
|
162 |
import json
|
163 |
+
|
164 |
with open("arena.json", "r", encoding="utf-8") as f:
|
165 |
arena_data = json.load(f)
|
166 |
+
|
167 |
mail_counts = defaultdict(int)
|
168 |
+
|
169 |
for country, conversations in arena_data.items():
|
170 |
for conversation in conversations:
|
171 |
if "username" in conversation:
|
172 |
mail = conversation["username"]
|
173 |
if mail:
|
174 |
mail_counts[mail.lower()] += 1
|
175 |
+
|
176 |
for mail, count in mail_counts.items():
|
177 |
username = mail_to_discord.get(mail.lower(), "")
|
178 |
if not username:
|
179 |
+
username = mail.split("@")[0] if "@" in mail else mail
|
180 |
+
|
181 |
+
data.append({"source": "arena", "username": username, "count": count})
|
|
|
|
|
|
|
|
|
182 |
except Exception as e:
|
183 |
print(f"Error loading arena data: {e}")
|
184 |
+
|
185 |
return data
|
186 |
|
187 |
+
|
188 |
@lru_cache(maxsize=32)
|
189 |
def get_user_contributions_cached(cache_buster: int):
|
190 |
return consolidate_all_data()
|
191 |
|
192 |
+
|
193 |
def consolidate_all_data():
|
194 |
all_data = []
|
195 |
all_data.extend(get_blend_es_data())
|
196 |
all_data.extend(get_include_data())
|
197 |
all_data.extend(get_estereotipos_data())
|
198 |
all_data.extend(get_arena_data())
|
199 |
+
|
200 |
+
user_contributions = defaultdict(
|
201 |
+
lambda: {
|
202 |
+
"username": "",
|
203 |
+
"blend_es": 0,
|
204 |
+
"include": 0,
|
205 |
+
"estereotipos": 0,
|
206 |
+
"arena": 0,
|
207 |
+
}
|
208 |
+
)
|
209 |
+
|
210 |
for item in all_data:
|
211 |
source = item["source"]
|
212 |
username = item["username"]
|
213 |
count = item["count"]
|
214 |
+
|
215 |
user_key = username.lower()
|
216 |
+
|
217 |
if not user_contributions[user_key]["username"]:
|
218 |
user_contributions[user_key]["username"] = username
|
219 |
+
|
220 |
if source == "blend-es":
|
221 |
user_contributions[user_key]["blend_es"] += count
|
222 |
elif source == "include":
|
|
|
225 |
user_contributions[user_key]["estereotipos"] += count
|
226 |
elif source == "arena":
|
227 |
user_contributions[user_key]["arena"] += count
|
228 |
+
|
229 |
rows = []
|
230 |
for _, data in user_contributions.items():
|
231 |
+
total = (
|
232 |
+
data["blend_es"] + data["include"] + data["estereotipos"] + data["arena"]
|
233 |
+
)
|
234 |
row = {
|
235 |
"Username": data["username"],
|
236 |
"Total": total,
|
237 |
"Blend-es": data["blend_es"],
|
238 |
"INCLUDE": data["include"],
|
239 |
"Estereotipos": data["estereotipos"],
|
240 |
+
"Arena": data["arena"],
|
241 |
}
|
242 |
rows.append(row)
|
243 |
+
|
244 |
df = pd.DataFrame(rows)
|
245 |
+
|
246 |
if not df.empty:
|
247 |
df = df.sort_values("Total", ascending=False)
|
248 |
+
|
249 |
return df
|
250 |
|
251 |
+
|
252 |
app = FastAPI()
|
253 |
|
254 |
last_update_time = 0
|
255 |
cached_data = None
|
256 |
|
257 |
+
|
258 |
def create_leaderboard_ui():
|
259 |
global cached_data, last_update_time
|
260 |
current_time = time.time()
|
261 |
+
|
262 |
if cached_data is not None and current_time - last_update_time < 300:
|
263 |
df = cached_data
|
264 |
else:
|
|
|
266 |
df = get_user_contributions_cached(cache_buster)
|
267 |
cached_data = df
|
268 |
last_update_time = current_time
|
269 |
+
|
270 |
if not df.empty:
|
271 |
df = df.reset_index(drop=True)
|
272 |
df.index = df.index + 1
|
273 |
df = df.rename_axis("Rank")
|
274 |
df = df.reset_index()
|
275 |
+
|
276 |
df_html = df.to_html(classes="leaderboard-table", border=0, index=False)
|
277 |
+
|
278 |
styled_html = f"""
|
279 |
<div style="margin: 20px 0;">
|
280 |
<p>Última Actualización: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(last_update_time))}</p>
|
|
|
343 |
"""
|
344 |
return styled_html
|
345 |
|
346 |
+
|
347 |
def refresh_data():
|
348 |
global cached_data, last_update_time
|
349 |
cached_data = None
|
350 |
last_update_time = 0
|
351 |
return create_leaderboard_ui()
|
352 |
|
353 |
+
|
354 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
355 |
with gr.Column(scale=1):
|
356 |
gr.Markdown("""# 🏆 Hackaton Leaderboard""")
|
357 |
+
|
358 |
leaderboard_html = gr.HTML(create_leaderboard_ui)
|
359 |
+
|
360 |
refresh_btn = gr.Button("🔄 Actualizar Datos", variant="primary")
|
361 |
refresh_btn.click(fn=refresh_data, outputs=leaderboard_html)
|
362 |
|
|
|
364 |
|
365 |
if __name__ == "__main__":
|
366 |
import uvicorn
|
367 |
+
|
368 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|