Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import gradio as gr | |
import os | |
import torch | |
os.system('pip install dashscope') | |
from http import HTTPStatus | |
import dashscope | |
from dashscope import Generation | |
from dashscope.api_entities.dashscope_response import Role | |
from typing import List, Optional, Tuple, Dict | |
from urllib.error import HTTPError | |
default_system = 'You are a helpful assistant.' | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(device) | |
# Asegúrate de que tu token de Hugging Face está cargado como una variable de entorno | |
hf_token = os.environ.get("token") | |
if hf_token is not None: | |
from huggingface_hub import HfFolder | |
HfFolder.save_token(hf_token) | |
else: | |
print("No se encontró el token de Hugging Face. Asegúrate de que la variable de entorno HF_TOKEN esté configurada.") | |
# Configuración inicial | |
tokenizer = AutoTokenizer.from_pretrained("Juliofc/chaterapia_model") | |
model_base = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it").to(device) | |
model_base.resize_token_embeddings(len(tokenizer)) | |
model_with_adapter = PeftModel.from_pretrained(model_base, "Juliofc/chaterapia_model").to(device) | |
CHAT_TEMPLATE= """{% for message in messages %} | |
{% if message['role'] == 'user' %} | |
{{'<user> ' + message['content'].strip() + ' </user>' }} | |
{% elif message['role'] == 'system' %} | |
{{'<system>\\n' + message['content'].strip() + '\\n</system>\\n\\n' }} | |
{% elif message['role'] == 'assistant' %} | |
{{ message['content'].strip() + ' </assistant>' + eos_token }} | |
{% elif message['role'] == 'input' %} | |
{{'<input> ' + message['content'] + ' </input>' }} | |
{% endif %} | |
{% endfor %}""" # Asegúrate de usar tu CHAT_TEMPLATE aquí | |
tokenizer.chat_template = CHAT_TEMPLATE | |
chat_history = [] | |
# Función para generar respuestas del modelo | |
def generate_response(user_input, chat_history): | |
# Preparar el input agregando el historial de chat | |
chat_history.append({"content": user_input, "role": "user"}) | |
user_input = tokenizer.apply_chat_template(chat_history, tokenize=False) | |
input_tokens = tokenizer(user_input, return_tensors='pt', padding=True, truncation=True, max_length=1024).to(device) | |
# Generar la respuesta | |
output_tokens = model_with_adapter.generate(**input_tokens, max_length=1024, pad_token_id=tokenizer.eos_token_id, top_k=50, do_sample=True, top_p=0.95, temperature=0.7) | |
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
last_us = generated_text.rfind("</user>") + len("</user>") | |
last_as = generated_text.rfind("</assistant>") | |
generated_text = generated_text[last_us:last_as].strip() | |
chat_history.append({"content": generated_text, "role": "assistant"}) | |
return generated_text, chat_history | |
def response(user_input, chat_history): | |
response, chat_history = generate_response(user_input, chat_history) | |
print(chat_history) | |
return response | |
iface = gr.ChatInterface(fn=response, inputs="text", outputs="text") | |
iface.launch() |