Spaces:
Runtime error
Runtime error
File size: 8,763 Bytes
12ea223 636adf6 12ea223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import datetime
import gradio as gr
import torch
from cache_system import CacheHandler
from header import article, header
from newspaper import Article
from prompts import summarize_clickbait_short_prompt
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
GenerationConfig,
LogitsProcessorList,
TextStreamer,
)
from utils import StopAfterTokenIsGenerated
total_runs = 0
# Cargar el tokenizador
tokenizer = AutoTokenizer.from_pretrained("somosnlp/NoticIA-7B")
# Cargamos el modelo en 4 bits para usar menos VRAM
# Usamos bitsandbytes por que es lo más sencillo de implementar para la demo aunque no es ni lo más rápido ni lo más eficiente
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
"somosnlp/NoticIA-7B",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
)
print(f"Model loaded in {model.device}")
# Parámetros de generación.
generation_config = GenerationConfig(
max_new_tokens=128, # Los resúmenes son cortos, no necesitamos más tokens
min_new_tokens=1, # No queremos resúmenes vacíos
do_sample=True, # Un poquito mejor que greedy sampling
num_beams=1,
use_cache=True, # Eficiencia
top_k=40,
top_p=0.1,
repetition_penalty=1.1, # Ayuda a evitar que el modelo entre en bucles
encoder_repetition_penalty=1.1, # Favorecemos que el modelo cite el texto original
resumenerature=0.15, # resumeneratura baja para evitar que el modelo genere texto muy creativo.
)
# Stop words, para evitar que el modelo genere tokens que no queremos.
stop_words = [
"<s>",
"</s>",
"\\n",
"[/INST]",
"[INST]",
"### User:",
"### Assistant:",
"###",
"<start_of_turn>" "<end_of_turn>" "<end_of_turn>\n" "<end_of_turn>\\n",
"<eos>",
]
# Creamos un logits processor para detener la generación cuando el modelo genere un stop word
stop_criteria = LogitsProcessorList(
[
StopAfterTokenIsGenerated(
stops=[
torch.tensor(tokenizer.encode(stop_word, add_special_tokens=False))
for stop_word in stop_words.copy()
],
eos_token_id=tokenizer.eos_token_id,
)
]
)
def generate_text(url: str) -> (str, str):
"""
Dada una URL de una noticia, genera un resumen de una sola frase que revela la verdad detrás del titular.
Args:
url (str): URL de la noticia.
Returns:
str: Titular de la noticia.
str: Resumen de la noticia.
"""
global cache_handler
global total_runs
total_runs += 1
print(f"Total runs: {total_runs}. Last run: {datetime.datetime.now()}")
url = url.strip()
if url.startswith("https://twitter.com/") or url.startswith("https://x.com/"):
yield (
"🤖 Vaya, parece que has introducido la url de un tweet. No puedo acceder a tweets, tienes que introducir la URL de una noticia.",
"❌❌❌ Si el tweet contiene una noticia, dame la URL de la noticia ❌❌❌",
"Error",
)
return (
"🤖 Vaya, parece que has introducido la url de un tweet. No puedo acceder a tweets, tienes que introducir la URL de una noticia.",
"❌❌❌ Si el tweet contiene una noticia, dame la URL de la noticia ❌❌❌",
"Error",
)
# 1) Download the article
# progress(0, desc="🤖 Accediendo a la noticia")
# First, check if the URL is in the cache
headline, text, resumen = cache_handler.get_from_cache(url, 0)
if headline is not None and text is not None and resumen is not None:
yield headline, resumen
return headline, resumen
else:
try:
article = Article(url)
article.download()
article.parse()
headline = article.title
text = article.text
except Exception as e:
print(e)
headline = None
text = None
if headline is None or text is None:
yield (
"🤖 No he podido acceder a la notica, asegurate que la URL es correcta y que es posible acceder a la noticia desde un navegador.",
"❌❌❌ Inténtalo de nuevo ❌❌❌",
"Error",
)
return (
"🤖 No he podido acceder a la notica, asegurate que la URL es correcta y que es posible acceder a la noticia desde un navegador.",
"❌❌❌ Inténtalo de nuevo ❌❌❌",
"Error",
)
# progress(0.5, desc="🤖 Leyendo noticia")
try:
prompt = summarize_clickbait_short_prompt(headline=headline, body=text)
formatted_prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer(
[formatted_prompt], return_tensors="pt", add_special_tokens=False
)
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
model_output = model.generate(
**model_inputs.to(model.device),
streamer=streamer,
generation_config=generation_config,
logits_processor=stop_criteria,
)
yield headline, streamer
resumen = tokenizer.batch_decode(
model_output,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)[0].replace("<|end_of_turn|>", "")
resumen = resumen.split("GPT4 Correct Assistant:")[-1]
except Exception as e:
print(e)
yield (
"🤖 Error en la generación.",
"❌❌❌ Inténtalo de nuevo más tarde ❌❌❌",
"Error",
)
return (
"🤖 Error en la generación.",
"❌❌❌ Inténtalo de nuevo más tarde ❌❌❌",
"Error",
)
cache_handler.add_to_cache(
url=url, title=headline, text=text, summary_type=0, summary=resumen
)
yield headline, resumen
hits, misses, cache_len = cache_handler.get_cache_stats()
print(
f"Hits: {hits}, misses: {misses}, cache length: {cache_len}. Percent hits: {round(hits/(hits+misses)*100,2)}%."
)
return headline, resumen
# Usamos una cache para guardar las últimas URL procesadas
# Los usuarios seguramente introducirán en un mismo día la misma URL varias veces, por que
# diferentes personas querrán ver el resumen de la misma noticia.
# La cache se encarga de guardar los resúmenes de las noticias para que no tengamos que volver a generarlos.
# La cache tiene un tamaño máximo de 1000 elementos, cuando se llena, se elimina el elemento más antiguo.
cache_handler = CacheHandler(max_cache_size=1000)
demo = gr.Interface(
generate_text,
inputs=[
gr.Textbox(
label="🌐 URL de la noticia",
info="Introduce la URL de la noticia que deseas resumir.",
value="https://somosnlp.org/",
interactive=True,
)
],
outputs=[
gr.Textbox(
label="📰 Titular de la noticia",
interactive=False,
placeholder="Aquí aparecerá el título de la noticia",
),
gr.Textbox(
label="🗒️ Resumen",
interactive=False,
placeholder="Aquí aparecerá el resumen de la noticia.",
),
],
# headline="⚔️ Clickbait Fighter! ⚔️",
thumbnail="https://huggingface.co/datasets/Iker/NoticIA/resolve/main/assets/logo.png",
theme="JohnSmith9982/small_and_pretty",
description=header,
article=article,
cache_examples=False,
concurrency_limit=1,
examples=[
"https://www.huffingtonpost.es/virales/le-compra-abrigo-abuela-97nos-reaccion-fantasia.html",
"https://emisorasunidas.com/2023/12/29/que-pasara-el-15-de-enero-de-2024/",
"https://www.huffingtonpost.es/virales/llega-espana-le-llama-atencion-nombres-propios-persona.html",
"https://www.infobae.com/que-puedo-ver/2023/11/19/la-comedia-familiar-y-navidena-que-ya-esta-en-netflix-y-puedes-ver-en-estas-fiestas/",
"https://www.cope.es/n/1610984",
],
submit_btn="Generar resumen",
stop_btn="Detener generación",
clear_btn="Limpiar",
allow_flagging=False,
)
demo.queue(max_size=None)
demo.launch(share=False)
|