Spaces:
Runtime error
Runtime error
Add functions to implement missing features
Browse files- functions.py +107 -8
functions.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
import requests
|
|
|
|
| 4 |
import torch
|
| 5 |
from bs4 import BeautifulSoup
|
| 6 |
from peft import PeftConfig, PeftModel
|
| 7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
|
|
| 8 |
|
| 9 |
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 10 |
|
|
@@ -12,6 +13,49 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
| 12 |
generation_config = GenerationConfig(temperature=.8,
|
| 13 |
top_p=0.75,
|
| 14 |
top_k=40)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def extract_text(url: str):
|
|
@@ -25,11 +69,17 @@ def extract_text(url: str):
|
|
| 25 |
return text
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def summarize_text(text: str):
|
| 29 |
print(['summarize_text', 'start'])
|
| 30 |
input_text = f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {text}\nOutput: '
|
| 31 |
batch = tokenizer(input_text, return_tensors='pt')
|
| 32 |
-
batch = batch.to(
|
| 33 |
print(['summarize_text', 'generating'])
|
| 34 |
with torch.cuda.amp.autocast():
|
| 35 |
output_tokens = model.generate(**batch,
|
|
@@ -41,14 +91,49 @@ def summarize_text(text: str):
|
|
| 41 |
print(['summarize_text', 'end'])
|
| 42 |
return output
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def get_answer_context():
|
| 48 |
-
return '
|
|
|
|
| 49 |
|
| 50 |
-
def answer_question(question:str):
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
def load_model(peft_model_id):
|
|
@@ -67,5 +152,19 @@ def load_model(peft_model_id):
|
|
| 67 |
return model, tokenizer
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
model, tokenizer = load_model(
|
| 71 |
"hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t3000-v300-v2")
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import requests
|
| 3 |
+
import random
|
| 4 |
import torch
|
| 5 |
from bs4 import BeautifulSoup
|
| 6 |
from peft import PeftConfig, PeftModel
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, AutoModel
|
| 8 |
+
from datasets import DatasetDict
|
| 9 |
|
| 10 |
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 11 |
|
|
|
|
| 13 |
generation_config = GenerationConfig(temperature=.8,
|
| 14 |
top_p=0.75,
|
| 15 |
top_k=40)
|
| 16 |
+
device = 'cuda'
|
| 17 |
+
|
| 18 |
+
shared = {
|
| 19 |
+
'answer_context': None,
|
| 20 |
+
'embeddings_dataset': None
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_nearest_examples(question: str, k: int):
|
| 25 |
+
print(['get_nearest_examples', 'start'])
|
| 26 |
+
question_embedding = get_embeddings([question]).cpu().detach().numpy()
|
| 27 |
+
embeddings_dataset = shared['embeddings_dataset']
|
| 28 |
+
scores, samples = embeddings_dataset.get_nearest_examples(
|
| 29 |
+
"embeddings", question_embedding, k)
|
| 30 |
+
print(['get_nearest_examples', 'scores and samples'])
|
| 31 |
+
for i in range(len(scores)):
|
| 32 |
+
print([scores[i], samples[i]])
|
| 33 |
+
print(['get_nearest_examples', 'end'])
|
| 34 |
+
return samples
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_embeddings(text):
|
| 38 |
+
print(['get_embeddings', 'start'])
|
| 39 |
+
encoded_input = tokenizer(
|
| 40 |
+
text, padding=True, truncation=True, return_tensors="pt")
|
| 41 |
+
encoded_input = {k: v.to('cuda') for k, v in encoded_input.items()}
|
| 42 |
+
model_output = model(**encoded_input)
|
| 43 |
+
model_output = model_output.last_hidden_state[:, 0]
|
| 44 |
+
emb_item = model_output.detach().cpu().numpy()[0]
|
| 45 |
+
print(['get_embeddings', 'end'])
|
| 46 |
+
return emb_item
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def build_faiss_index(text):
|
| 50 |
+
print(['build_faiss_index', 'start'])
|
| 51 |
+
text_list = split_text(text)
|
| 52 |
+
emb_list = []
|
| 53 |
+
for item in text_list:
|
| 54 |
+
emb_list.append({"embeddings": get_embeddings(item)})
|
| 55 |
+
dataset = DatasetDict({'train': emb_list})
|
| 56 |
+
dataset.add_faiss_index(column="embeddings")
|
| 57 |
+
shared['embeddings_dataset'] = dataset
|
| 58 |
+
print(['build_faiss_index', 'end'])
|
| 59 |
|
| 60 |
|
| 61 |
def extract_text(url: str):
|
|
|
|
| 69 |
return text
|
| 70 |
|
| 71 |
|
| 72 |
+
def split_text(text: str):
|
| 73 |
+
lines = text.split('\n')
|
| 74 |
+
lines = [line.strip() for line in lines if line.strip()]
|
| 75 |
+
return lines
|
| 76 |
+
|
| 77 |
+
|
| 78 |
def summarize_text(text: str):
|
| 79 |
print(['summarize_text', 'start'])
|
| 80 |
input_text = f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {text}\nOutput: '
|
| 81 |
batch = tokenizer(input_text, return_tensors='pt')
|
| 82 |
+
batch = batch.to(device)
|
| 83 |
print(['summarize_text', 'generating'])
|
| 84 |
with torch.cuda.amp.autocast():
|
| 85 |
output_tokens = model.generate(**batch,
|
|
|
|
| 91 |
print(['summarize_text', 'end'])
|
| 92 |
return output
|
| 93 |
|
| 94 |
+
|
| 95 |
+
def generate_question(text: str):
|
| 96 |
+
print(['generate_question', 'start'])
|
| 97 |
+
# Get a random section of the whole text to generate a question
|
| 98 |
+
fragments = split_text(text)
|
| 99 |
+
rnd_text = random.choice(fragments)
|
| 100 |
+
shared['answer_context'] = rnd_text
|
| 101 |
+
|
| 102 |
+
input_text = f'<s>Instruction: Dado el siguiente texto quiero que generes una pregunta cuya respuesta se encuentre en él.\nInput: {rnd_text}\nOutput: '
|
| 103 |
+
batch = tokenizer(input_text, return_tensors='pt')
|
| 104 |
+
print(['generate_question', 'generating'])
|
| 105 |
+
with torch.cuda.amp.autocast():
|
| 106 |
+
output_tokens = model.generate(**batch,
|
| 107 |
+
max_new_tokens=256,
|
| 108 |
+
generation_config=generation_config)
|
| 109 |
+
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
| 110 |
+
print(['generate_question', 'end'])
|
| 111 |
+
return output
|
| 112 |
+
|
| 113 |
|
| 114 |
def get_answer_context():
|
| 115 |
+
return shared['answer_context']
|
| 116 |
+
|
| 117 |
|
| 118 |
+
def answer_question(full_text: str, question: str):
|
| 119 |
+
print(['answer_question', 'start'])
|
| 120 |
+
if not shared['embeddings_dataset']:
|
| 121 |
+
build_faiss_index(full_text)
|
| 122 |
+
top_k_samples = get_nearest_examples(question, k=5)
|
| 123 |
+
|
| 124 |
+
context = '\n'.join(top_k_samples)
|
| 125 |
+
|
| 126 |
+
input_text = f"""<s>Instruction: Te voy a proporcionar un texto del cual deseo que me respondas una pregunta.
|
| 127 |
+
El texto es el siguiente: `{context}`\nInput: {question}\nOutput: """
|
| 128 |
+
batch = tokenizer(input_text, return_tensors='pt')
|
| 129 |
+
print(['answer_question', 'generating'])
|
| 130 |
+
with torch.cuda.amp.autocast():
|
| 131 |
+
output_tokens = model.generate(**batch,
|
| 132 |
+
max_new_tokens=256,
|
| 133 |
+
generation_config=generation_config)
|
| 134 |
+
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
| 135 |
+
print(['answer_question', 'end'])
|
| 136 |
+
return output
|
| 137 |
|
| 138 |
|
| 139 |
def load_model(peft_model_id):
|
|
|
|
| 152 |
return model, tokenizer
|
| 153 |
|
| 154 |
|
| 155 |
+
def load_embeddings_model():
|
| 156 |
+
print(['load_embeddings_model', 'start'])
|
| 157 |
+
model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
| 158 |
+
print(['load_embeddings_model', 'loading tokenizer'])
|
| 159 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
| 160 |
+
print(['load_embeddings_model', 'loading model'])
|
| 161 |
+
model = AutoModel.from_pretrained(model_ckpt)
|
| 162 |
+
model = model.to(device)
|
| 163 |
+
print(['load_embeddings_model', 'end'])
|
| 164 |
+
return model, tokenizer
|
| 165 |
+
|
| 166 |
+
|
| 167 |
model, tokenizer = load_model(
|
| 168 |
"hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t3000-v300-v2")
|
| 169 |
+
|
| 170 |
+
emb_model, emb_tokenizer = load_embeddings_model()
|