import gradio as gr import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "hackathon-somos-nlp-2023/bertin-gpt-j-6b-ner-es" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map="auto", revision="half", ) tokenizer = AutoTokenizer.from_pretrained(peft_model_id) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) model.eval() def gen_entities(in_text): """Does Named Entity Recognition in the given text.""" text = f" text: {in_text}\n\n entities:" batch = tokenizer(text, return_tensors="pt") batch["input_ids"] = batch["input_ids"].to("cuda") with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258) response = tokenizer.batch_decode( output_tokens.detach().cpu().numpy(), skip_special_tokens=False )[0] return response[response.find("entities") : response.find("")] iface = gr.Interface( fn=gen_entities, inputs="text", outputs="text", title="Podcast Named Entity Recognition", description="Introduce un texto corto para que el modelo identifique las identidades presentes en el mismo.", theme="gradio/monochrome", examples=[ [ "Yo hoy voy a hablar de mujeres en el mundo del arte, porque me ha leído un libro fantástico que se llama Historia del arte sin hombres, de Katie Hesel." ] ], ) iface.launch()