Spaces:
Sleeping
Sleeping
codigo base app pregunta y respuesta
Browse files- app.py +53 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from simpletransformers.t5 import T5Model , T5Args
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
model_args = T5Args()
|
| 6 |
+
model_args.num_train_epochs = 3
|
| 7 |
+
#model_args.no_save = True
|
| 8 |
+
#model_args.evaluate_generated_text = True
|
| 9 |
+
#model_args.evaluate_during_training = True
|
| 10 |
+
#model_args.evaluate_during_training_verbose = True
|
| 11 |
+
model_args.overwrite_output_dir = True
|
| 12 |
+
model_args.fp16 = False
|
| 13 |
+
model_args.use_cuda = False
|
| 14 |
+
model_args.use_multiprocessing = False
|
| 15 |
+
model_args.use_multiprocessing_for_evaluation = False
|
| 16 |
+
model_args.use_multiprocessed_decoding = False
|
| 17 |
+
model_args.learning_rate=0.001
|
| 18 |
+
#model_args.num_beams = 3
|
| 19 |
+
model_args.train_batch_size = 4
|
| 20 |
+
model_args.eval_batch_size = 4
|
| 21 |
+
model_args.adafactor_beta1 = 0
|
| 22 |
+
model_args.length_penalty=1.5
|
| 23 |
+
model_args.max_length=100
|
| 24 |
+
model_args.max_seq_length = 100
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
model = T5Model("mt5", "hackathon-pln-es/itama", args=model_args , use_cuda=False)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def predict(input_text):
|
| 31 |
+
p = model.predict([input_text])[0]
|
| 32 |
+
return p
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
gr.Interface(
|
| 36 |
+
fn=predict,
|
| 37 |
+
inputs=gr.inputs.Textbox(lines=1, label="Pregunta por profesión - {profesión}: {pregunta}"),
|
| 38 |
+
outputs=[
|
| 39 |
+
gr.outputs.Textbox(label="Respuesta"),
|
| 40 |
+
],
|
| 41 |
+
theme="peach",
|
| 42 |
+
title='Modelo predicctivo AMA Reddit',
|
| 43 |
+
description='Modelo T5 Transformer (mt5-base), utilizando dataset de preguntas y respuestas de AMA Reddit',
|
| 44 |
+
examples=[
|
| 45 |
+
'psicologo: cuanto trabajas al año?',
|
| 46 |
+
'jefe: cuanto trabajas al año?',
|
| 47 |
+
'profesor: cuando dinero ganas al año?',
|
| 48 |
+
],
|
| 49 |
+
article=article,
|
| 50 |
+
allow_flagging="manual",
|
| 51 |
+
#flagging_options=["right translation", "wrong translation", "error", "other"],
|
| 52 |
+
flagging_dir="logs"
|
| 53 |
+
).launch(enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
simpletransformers==0.63.6
|
| 3 |
+
torch
|