File size: 6,279 Bytes
d577809
 
 
 
 
 
 
3c3ebf3
 
 
 
d577809
 
 
 
 
 
 
2289967
d577809
 
 
2289967
d577809
 
 
 
 
 
 
2289967
d577809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
from transformers import pipeline
import torch
import PyPDF2
from io import BytesIO

st.set_page_config(
    page_title="TextSphere",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded"
)

st.markdown("""
    <style>
        .footer {
            position: fixed;
            bottom: 0;
            right: 0;
            padding: 10px;
            font-size: 16px;
            color: #333;
            background-color: #f1f1f1;
        }
    </style>
    <div class="footer">
        Made with ❀️ by Baibhav Malviya
    </div>
""", unsafe_allow_html=True)


@st.cache_resource
def load_models():
    try:
        text_classification_model = pipeline(
            "text-classification",
            model="distilbert-base-uncased-finetuned-sst-2-english"
        )

        question_answering_model = pipeline(
            "question-answering",
            model="distilbert-base-uncased-distilled-squad"
        )

        translation_model = pipeline(
            "translation",
            model="Helsinki-NLP/opus-mt-en-fr"
        )

        summarization_model = pipeline(
            "summarization",
            model="facebook/bart-large-cnn"
        )

    except Exception as e:
        raise RuntimeError(f"Failed to load models: {str(e)}")

    return text_classification_model, question_answering_model, translation_model, summarization_model

def extract_text_from_pdf(uploaded_pdf):
    try:
        pdf_reader = PyPDF2.PdfReader(uploaded_pdf)
        pdf_text = ""
        for page_num in range(len(pdf_reader.pages)):
            page = pdf_reader.pages[page_num]
            pdf_text += page.extract_text()
        return pdf_text
    except Exception as e:
        st.error(f"Error reading the PDF: {e}")
        return None


try:
    classification_model, qa_model, translation_model, summarization_model = load_models()
except Exception as e:
    st.error(f"An error occurred while loading models: {e}")

st.sidebar.title("AI Solutions")
option = st.sidebar.selectbox(
    "Choose a task",
    ["Question Answering", "Text Classification", "Language Translation", "Text Summarization"]
)

if option == "Question Answering":
    st.title("Question Answering")
    st.markdown("<h4 style='font-size: 20px;'>- because Google wasn't enough πŸ˜‰</h4>", unsafe_allow_html=True)
    uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf")
    
    context_input = st.text_area("Enter context (a paragraph of text, or leave empty if using PDF):")
    question = st.text_input("Enter your question:")

    if uploaded_pdf:
        context_input = extract_text_from_pdf(uploaded_pdf)
    
    if st.button("Get Answer"):
        with st.spinner('Getting answer...'):
            try:
                if context_input and question:
                    answer = qa_model(question=question, context=context_input)
                    st.write("Answer:", answer['answer'])

                    st.balloons()
                else:
                    st.error("Please enter both context and a question.")
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Text Classification":
    st.title("Text Classification")
    st.markdown("<h4 style='font-size: 20px;'>- where machines learn to hate spam as much we do πŸ˜…</h4>", unsafe_allow_html=True)
    text = st.text_area("Enter text for classification:")
    if st.button("Classify Text"):
        with st.spinner('Classifying text...'):
            try:
                classification = classification_model(text)
                st.json(classification)

                st.balloons()
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Language Translation":
    st.title("Language Translation (English to Multiple Languages)")
    st.markdown("<h4 style='font-size: 20px;'>- when 'translate' is the only button you know 😁</h4>", unsafe_allow_html=True)
    target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"])
    
    language_models = {
        "French": "Helsinki-NLP/opus-mt-en-fr",
        "Spanish": "Helsinki-NLP/opus-mt-en-es",
        "German": "Helsinki-NLP/opus-mt-en-de",
        "Italian": "Helsinki-NLP/opus-mt-en-it",
        "Portuguese": "Helsinki-NLP/opus-mt-en-pt",
        "Hindi": "Helsinki-NLP/opus-mt-en-hi"
    }

    selected_model = language_models.get(target_language)
    if selected_model:
        translation_model = pipeline("translation", model=selected_model)

    text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:")
    if st.button("Translate"):
        with st.spinner('Translating text...'):
            try:
                if text_to_translate:
                    translated_text = translation_model(text_to_translate)
                    st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text'])
                    
                    st.balloons()
                else:
                    st.error("Please enter text to translate.")
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Text Summarization":
    st.title("Text Summarization")
    st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole article, anyway? πŸ₯΅</h4>", unsafe_allow_html=True)
    uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf")
    
    text_to_summarize = st.text_area("Enter text to summarize (or leave empty if using PDF):")

    if uploaded_pdf:
        text_to_summarize = extract_text_from_pdf(uploaded_pdf)

    if st.button("Summarize"):
        with st.spinner('Summarizing text...'):
            try:
                if text_to_summarize:
                    summary = summarization_model(text_to_summarize, max_length=130, min_length=30, do_sample=False)
                    st.write("Summary:", summary[0]['summary_text'])

                    st.balloons()
                else:
                    st.error("Please enter text or upload a PDF for summarization.")
            except Exception as e:
                st.error(f"An error occurred: {e}")