Spaces:
Sleeping
Sleeping
File size: 7,608 Bytes
d577809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import streamlit as st
from transformers import pipeline
import torch
import PyPDF2
from io import BytesIO
# Set page configuration
st.set_page_config(
page_title="TextSphere", # Title of the page
page_icon="π€", # Icon to be displayed in the browser tab
layout="wide", # Layout: can be 'wide' or 'centered'
initial_sidebar_state="expanded" # Sidebar state: can be 'expanded' or 'collapsed'
)
st.markdown("""
<style>
.footer {
position: fixed;
bottom: 0;
width: 100%;
text-align: center;
background-color: #f1f1f1;
padding: 10px;
font-size: 16px;
color: #333;
}
</style>
<div class="footer">
Made with β€οΈ by Baibhav Malviya
</div>
""", unsafe_allow_html=True)
# Load models from Hugging Face
@st.cache_resource
def load_models():
try:
# Load DistilBERT for text classification
text_classification_model = pipeline(
"text-classification",
model="distilbert-base-uncased-finetuned-sst-2-english"
)
# Load Question Answering model
question_answering_model = pipeline(
"question-answering",
model="distilbert-base-uncased-distilled-squad"
)
# Load Translation model
translation_model = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-en-fr"
)
# Load Summarization model
summarization_model = pipeline(
"summarization",
model="facebook/bart-large-cnn"
)
except Exception as e:
raise RuntimeError(f"Failed to load models: {str(e)}")
return text_classification_model, question_answering_model, translation_model, summarization_model
# Function to extract text from a PDF
def extract_text_from_pdf(uploaded_pdf):
try:
pdf_reader = PyPDF2.PdfReader(uploaded_pdf)
pdf_text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
pdf_text += page.extract_text()
return pdf_text
except Exception as e:
st.error(f"Error reading the PDF: {e}")
return None
# Load models
try:
classification_model, qa_model, translation_model, summarization_model = load_models()
except Exception as e:
st.error(f"An error occurred while loading models: {e}")
# Sidebar navigation
st.sidebar.title("AI Solutions")
option = st.sidebar.selectbox(
"Choose a task",
["Question Answering", "Text Classification", "Language Translation", "Text Summarization"]
)
# Page content based on the selected option
if option == "Question Answering":
st.title("Question Answering")
st.markdown("<h4 style='font-size: 20px;'>- because Google wasn't enough π</h4>", unsafe_allow_html=True)
# PDF upload section
uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf")
# Text input section (when PDF is not uploaded)
context_input = st.text_area("Enter context (a paragraph of text, or leave empty if using PDF):")
question = st.text_input("Enter your question:")
if uploaded_pdf:
# Extract text from PDF
context_input = extract_text_from_pdf(uploaded_pdf)
if st.button("Get Answer"):
with st.spinner('Getting answer...'):
try:
if context_input and question:
# Use the question answering model to find the answer
answer = qa_model(question=question, context=context_input)
st.write("Answer:", answer['answer'])
# Show Streamlit balloons after task completion
st.balloons()
else:
st.error("Please enter both context and a question.")
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Text Classification":
st.title("Text Classification")
st.markdown("<h4 style='font-size: 20px;'>- where machines learn to hate spam as much we do π
</h4>", unsafe_allow_html=True)
text = st.text_area("Enter text for classification:")
if st.button("Classify Text"):
with st.spinner('Classifying text...'):
try:
classification = classification_model(text)
st.json(classification)
# Show Streamlit balloons after task completion
st.balloons()
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Language Translation":
st.title("Language Translation (English to Multiple Languages)")
st.markdown("<h4 style='font-size: 20px;'>- when 'translate' is the only button you know π</h4>", unsafe_allow_html=True)
# Language options for translation
target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"])
# Map of selected language to corresponding Hugging Face translation model
language_models = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"German": "Helsinki-NLP/opus-mt-en-de",
"Italian": "Helsinki-NLP/opus-mt-en-it",
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
"Hindi": "Helsinki-NLP/opus-mt-en-hi"
}
# Update translation model based on selected language
selected_model = language_models.get(target_language)
if selected_model:
translation_model = pipeline("translation", model=selected_model)
text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:")
if st.button("Translate"):
with st.spinner('Translating text...'):
try:
if text_to_translate:
translated_text = translation_model(text_to_translate)
st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text'])
# Show Streamlit balloons after task completion
st.balloons()
else:
st.error("Please enter text to translate.")
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Text Summarization":
st.title("Text Summarization")
st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole article, anyway? π₯΅</h4>", unsafe_allow_html=True)
# PDF upload section
uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf")
# Text input section (when PDF is not uploaded)
text_to_summarize = st.text_area("Enter text to summarize (or leave empty if using PDF):")
if uploaded_pdf:
# Extract text from PDF
text_to_summarize = extract_text_from_pdf(uploaded_pdf)
if st.button("Summarize"):
with st.spinner('Summarizing text...'):
try:
if text_to_summarize:
# Use the summarization model to generate a summary
summary = summarization_model(text_to_summarize, max_length=130, min_length=30, do_sample=False)
st.write("Summary:", summary[0]['summary_text'])
# Show Streamlit balloons after task completion
st.balloons()
else:
st.error("Please enter text or upload a PDF for summarization.")
except Exception as e:
st.error(f"An error occurred: {e}")
|