File size: 7,608 Bytes
d577809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
from transformers import pipeline
import torch
import PyPDF2
from io import BytesIO

# Set page configuration
st.set_page_config(
    page_title="TextSphere",  # Title of the page
    page_icon="πŸ€–",  # Icon to be displayed in the browser tab
    layout="wide",  # Layout: can be 'wide' or 'centered'
    initial_sidebar_state="expanded"  # Sidebar state: can be 'expanded' or 'collapsed'
)

st.markdown("""
    <style>
        .footer {
            position: fixed;
            bottom: 0;
            width: 100%;
            text-align: center;
            background-color: #f1f1f1;
            padding: 10px;
            font-size: 16px;
            color: #333;
        }
    </style>
    <div class="footer">
        Made with ❀️ by Baibhav Malviya
    </div>
""", unsafe_allow_html=True)

# Load models from Hugging Face
@st.cache_resource
def load_models():
    try:
        # Load DistilBERT for text classification
        text_classification_model = pipeline(
            "text-classification",
            model="distilbert-base-uncased-finetuned-sst-2-english"
        )

        # Load Question Answering model
        question_answering_model = pipeline(
            "question-answering",
            model="distilbert-base-uncased-distilled-squad"
        )

        # Load Translation model
        translation_model = pipeline(
            "translation",
            model="Helsinki-NLP/opus-mt-en-fr"
        )

        # Load Summarization model
        summarization_model = pipeline(
            "summarization",
            model="facebook/bart-large-cnn"
        )

    except Exception as e:
        raise RuntimeError(f"Failed to load models: {str(e)}")

    return text_classification_model, question_answering_model, translation_model, summarization_model


# Function to extract text from a PDF
def extract_text_from_pdf(uploaded_pdf):
    try:
        pdf_reader = PyPDF2.PdfReader(uploaded_pdf)
        pdf_text = ""
        for page_num in range(len(pdf_reader.pages)):
            page = pdf_reader.pages[page_num]
            pdf_text += page.extract_text()
        return pdf_text
    except Exception as e:
        st.error(f"Error reading the PDF: {e}")
        return None


# Load models
try:
    classification_model, qa_model, translation_model, summarization_model = load_models()
except Exception as e:
    st.error(f"An error occurred while loading models: {e}")

# Sidebar navigation
st.sidebar.title("AI Solutions")
option = st.sidebar.selectbox(
    "Choose a task",
    ["Question Answering", "Text Classification", "Language Translation", "Text Summarization"]
)

# Page content based on the selected option
if option == "Question Answering":
    st.title("Question Answering")
    st.markdown("<h4 style='font-size: 20px;'>- because Google wasn't enough πŸ˜‰</h4>", unsafe_allow_html=True)
    # PDF upload section
    uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf")
    
    # Text input section (when PDF is not uploaded)
    context_input = st.text_area("Enter context (a paragraph of text, or leave empty if using PDF):")
    question = st.text_input("Enter your question:")

    if uploaded_pdf:
        # Extract text from PDF
        context_input = extract_text_from_pdf(uploaded_pdf)
    
    if st.button("Get Answer"):
        with st.spinner('Getting answer...'):
            try:
                if context_input and question:
                    # Use the question answering model to find the answer
                    answer = qa_model(question=question, context=context_input)
                    st.write("Answer:", answer['answer'])

                    # Show Streamlit balloons after task completion
                    st.balloons()
                else:
                    st.error("Please enter both context and a question.")
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Text Classification":
    st.title("Text Classification")
    st.markdown("<h4 style='font-size: 20px;'>- where machines learn to hate spam as much we do πŸ˜…</h4>", unsafe_allow_html=True)
    text = st.text_area("Enter text for classification:")
    if st.button("Classify Text"):
        with st.spinner('Classifying text...'):
            try:
                classification = classification_model(text)
                st.json(classification)

                # Show Streamlit balloons after task completion
                st.balloons()
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Language Translation":
    st.title("Language Translation (English to Multiple Languages)")
    st.markdown("<h4 style='font-size: 20px;'>- when 'translate' is the only button you know 😁</h4>", unsafe_allow_html=True)
    # Language options for translation
    target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"])
    
    # Map of selected language to corresponding Hugging Face translation model
    language_models = {
        "French": "Helsinki-NLP/opus-mt-en-fr",
        "Spanish": "Helsinki-NLP/opus-mt-en-es",
        "German": "Helsinki-NLP/opus-mt-en-de",
        "Italian": "Helsinki-NLP/opus-mt-en-it",
        "Portuguese": "Helsinki-NLP/opus-mt-en-pt",
        "Hindi": "Helsinki-NLP/opus-mt-en-hi"
    }

    # Update translation model based on selected language
    selected_model = language_models.get(target_language)
    if selected_model:
        translation_model = pipeline("translation", model=selected_model)

    text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:")
    if st.button("Translate"):
        with st.spinner('Translating text...'):
            try:
                if text_to_translate:
                    translated_text = translation_model(text_to_translate)
                    st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text'])
                    
                    # Show Streamlit balloons after task completion
                    st.balloons()
                else:
                    st.error("Please enter text to translate.")
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Text Summarization":
    st.title("Text Summarization")
    st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole article, anyway? πŸ₯΅</h4>", unsafe_allow_html=True)
    # PDF upload section
    uploaded_pdf = st.file_uploader("Upload a PDF file (optional)", type="pdf")
    
    # Text input section (when PDF is not uploaded)
    text_to_summarize = st.text_area("Enter text to summarize (or leave empty if using PDF):")

    if uploaded_pdf:
        # Extract text from PDF
        text_to_summarize = extract_text_from_pdf(uploaded_pdf)

    if st.button("Summarize"):
        with st.spinner('Summarizing text...'):
            try:
                if text_to_summarize:
                    # Use the summarization model to generate a summary
                    summary = summarization_model(text_to_summarize, max_length=130, min_length=30, do_sample=False)
                    st.write("Summary:", summary[0]['summary_text'])

                    # Show Streamlit balloons after task completion
                    st.balloons()
                else:
                    st.error("Please enter text or upload a PDF for summarization.")
            except Exception as e:
                st.error(f"An error occurred: {e}")