Upload app (1).py
Browse files- app (1).py +391 -0
app (1).py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
#!/usr/bin/env python
|
8 |
+
# coding: utf-8
|
9 |
+
|
10 |
+
# In[3]:
|
11 |
+
|
12 |
+
|
13 |
+
#!pip install torchaudio
|
14 |
+
|
15 |
+
|
16 |
+
# In[2]:
|
17 |
+
|
18 |
+
|
19 |
+
from IPython.display import Audio
|
20 |
+
import IPython.display as ipd
|
21 |
+
from scipy.io import wavfile
|
22 |
+
import numpy as np
|
23 |
+
import warnings
|
24 |
+
import re
|
25 |
+
warnings.filterwarnings("ignore")
|
26 |
+
import soundfile as sf
|
27 |
+
import librosa
|
28 |
+
import torch
|
29 |
+
import os
|
30 |
+
import soundfile as sf
|
31 |
+
import librosa
|
32 |
+
import noisereduce as nr
|
33 |
+
import numpy as np
|
34 |
+
import gradio as gr
|
35 |
+
import pyloudnorm as pyln
|
36 |
+
# import torchaudio
|
37 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
38 |
+
from transformers import AutoModelForCTC, AutoProcessor, AutoTokenizer, AutoModelForCausalLM
|
39 |
+
from transformers import pipeline, AutoProcessor, AutoModelForSpeechSeq2Seq
|
40 |
+
import pandas as pd
|
41 |
+
from transformers import pipeline, AutoModelForAudioClassification, AutoProcessor
|
42 |
+
|
43 |
+
|
44 |
+
# In[3]:
|
45 |
+
|
46 |
+
|
47 |
+
# In[3]:
|
48 |
+
|
49 |
+
|
50 |
+
# Set device and dtype
|
51 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
52 |
+
# device= "cpu"
|
53 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
54 |
+
lid_model_id = "facebook/mms-lid-126"
|
55 |
+
lid_pipeline = pipeline("audio-classification", model=lid_model_id,device=device)
|
56 |
+
language_mapping = {
|
57 |
+
"hin": "hindi",
|
58 |
+
"ben": "bengali",
|
59 |
+
"eng": "english",
|
60 |
+
"guj": "gujarati"
|
61 |
+
}
|
62 |
+
|
63 |
+
|
64 |
+
# In[4]:
|
65 |
+
|
66 |
+
|
67 |
+
def detect_language_for_audio_file(audio_file_path, lid_pipeline, target_sampling_rate=16000):
|
68 |
+
"""
|
69 |
+
Detects the language of a given audio file and returns a DataFrame.
|
70 |
+
|
71 |
+
Parameters:
|
72 |
+
- audio_file_path (str): The path to the audio file.
|
73 |
+
- lid_pipeline: The language identification pipeline.
|
74 |
+
- target_sampling_rate (int): The target sampling rate for the audio file. Default is 16000.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
- df (pd.DataFrame): A DataFrame containing the detected language and filename.
|
78 |
+
"""
|
79 |
+
detected_languages = []
|
80 |
+
audio_filenames = []
|
81 |
+
|
82 |
+
filename = os.path.basename(audio_file_path)
|
83 |
+
waveform, original_sampling_rate = librosa.load(audio_file_path, sr=None)
|
84 |
+
|
85 |
+
if len(waveform.shape) > 1:
|
86 |
+
waveform = librosa.to_mono(waveform)
|
87 |
+
|
88 |
+
if original_sampling_rate != target_sampling_rate:
|
89 |
+
waveform = librosa.resample(waveform, orig_sr=original_sampling_rate, target_sr=target_sampling_rate)
|
90 |
+
|
91 |
+
# Perform language identification
|
92 |
+
lid_result = lid_pipeline(waveform, sampling_rate=target_sampling_rate)
|
93 |
+
detected_language = lid_result[0]['label'].split('_')[0]
|
94 |
+
print(f"Detected language for {filename}: {detected_language}")
|
95 |
+
|
96 |
+
detected_languages.append(detected_language)
|
97 |
+
audio_filenames.append(filename)
|
98 |
+
|
99 |
+
df = pd.DataFrame({
|
100 |
+
"Detected_Language": detected_languages,
|
101 |
+
"Audio_Filename": audio_filenames
|
102 |
+
})
|
103 |
+
|
104 |
+
# removing nondetected languages
|
105 |
+
|
106 |
+
df['Detected_Language'] = df['Detected_Language'].map(language_mapping)
|
107 |
+
|
108 |
+
df.dropna(inplace=True, axis= 0)
|
109 |
+
|
110 |
+
# adding model names based on language
|
111 |
+
model_names = []
|
112 |
+
|
113 |
+
for index, row in df.iterrows():
|
114 |
+
detected_language = row['Detected_Language']
|
115 |
+
|
116 |
+
model_name = "ai4bharat/indicwav2vec_v1_" + detected_language
|
117 |
+
|
118 |
+
model_names.append(model_name)
|
119 |
+
|
120 |
+
df['Model_Name'] = model_names
|
121 |
+
|
122 |
+
return df
|
123 |
+
# Example usage:
|
124 |
+
# audio_file_path = 'processed_audio.wav'
|
125 |
+
# df = detect_language_for_audio_file(audio_file_path, lid_pipeline)
|
126 |
+
# print(df)
|
127 |
+
|
128 |
+
|
129 |
+
# In[11]:
|
130 |
+
|
131 |
+
|
132 |
+
loaded_models = {}
|
133 |
+
current_loaded_model = None
|
134 |
+
|
135 |
+
def load_model_and_tokenizer(standardized_language):
|
136 |
+
global current_loaded_model
|
137 |
+
|
138 |
+
# If the requested model is already loaded, return it
|
139 |
+
if standardized_language in loaded_models:
|
140 |
+
return loaded_models[standardized_language]
|
141 |
+
|
142 |
+
# Check if the current loaded model is the same as the new one
|
143 |
+
if current_loaded_model == standardized_language:
|
144 |
+
return loaded_models[standardized_language]
|
145 |
+
|
146 |
+
# Clear the specific model currently loaded on the GPU, if any
|
147 |
+
elif current_loaded_model is not None:
|
148 |
+
del loaded_models[current_loaded_model]
|
149 |
+
torch.cuda.empty_cache()
|
150 |
+
current_loaded_model = None
|
151 |
+
|
152 |
+
# Determine the model name based on the standardized language
|
153 |
+
if standardized_language == 'hindi':
|
154 |
+
model_name = "ai4bharat/indicwav2vec-hindi"
|
155 |
+
elif standardized_language == 'odia':
|
156 |
+
model_name = "ai4bharat/indicwav2vec-odia"
|
157 |
+
elif standardized_language == 'english':
|
158 |
+
model_name = "facebook/wav2vec2-large-960h-lv60-self"
|
159 |
+
else:
|
160 |
+
model_name = "ai4bharat/indicwav2vec_v1_" + standardized_language
|
161 |
+
|
162 |
+
# Load the model and tokenizer
|
163 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
164 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
165 |
+
|
166 |
+
# Update the loaded models and current loaded model
|
167 |
+
loaded_models[standardized_language] = (model, tokenizer)
|
168 |
+
current_loaded_model = standardized_language
|
169 |
+
|
170 |
+
return model, tokenizer
|
171 |
+
|
172 |
+
|
173 |
+
# In[6]:
|
174 |
+
|
175 |
+
|
176 |
+
# In[5]:
|
177 |
+
|
178 |
+
|
179 |
+
def perform_transcription(df):
|
180 |
+
|
181 |
+
transcriptions = []
|
182 |
+
|
183 |
+
for index, row in df.iterrows():
|
184 |
+
audio_file_path = row['Audio_Filename']
|
185 |
+
detected_language = row['Detected_Language']
|
186 |
+
|
187 |
+
standardized_language = language_mapping.get(detected_language, detected_language)
|
188 |
+
model, tokenizer = load_model_and_tokenizer(standardized_language)
|
189 |
+
|
190 |
+
input_audio, _ = librosa.load(audio_file_path, sr=16000)
|
191 |
+
input_values = tokenizer(input_audio, return_tensors="pt").input_values
|
192 |
+
|
193 |
+
with torch.no_grad():
|
194 |
+
logits = model(input_values).logits
|
195 |
+
|
196 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
197 |
+
text = tokenizer.batch_decode(predicted_ids)[0]
|
198 |
+
|
199 |
+
transcriptions.append(text)
|
200 |
+
|
201 |
+
df['Transcription'] = transcriptions
|
202 |
+
|
203 |
+
return df
|
204 |
+
|
205 |
+
|
206 |
+
# In[8]:
|
207 |
+
|
208 |
+
|
209 |
+
# In[7]:
|
210 |
+
|
211 |
+
|
212 |
+
# Loading the tokenizer and model from Hugging Face's model hub.
|
213 |
+
tokenizer = AutoTokenizer.from_pretrained("soketlabs/pragna-1b", token=os.environ.get('HF_TOKEN'))
|
214 |
+
model = AutoModelForCausalLM.from_pretrained(
|
215 |
+
"soketlabs/pragna-1b",
|
216 |
+
token=os.environ.get('HF_TOKEN'),
|
217 |
+
revision='3c5b8b1309f7d89710331ba2f164570608af0de7'
|
218 |
+
)
|
219 |
+
model.load_adapter('soketlabs/pragna-1b-it-v0.1', token=os.environ.get('HF_TOKEN'))
|
220 |
+
model = model.to(device)
|
221 |
+
|
222 |
+
|
223 |
+
# Function to generate response
|
224 |
+
def generate_response(transcription):
|
225 |
+
try:
|
226 |
+
messages = [
|
227 |
+
{"role": "system", "content": " you are a friendly bot to help the user"},
|
228 |
+
{"role": "user", "content": transcription},
|
229 |
+
]
|
230 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
231 |
+
input_ids = tokenized_chat[0].to(device)
|
232 |
+
if len(input_ids.shape) == 1:
|
233 |
+
input_ids = input_ids.unsqueeze(0)
|
234 |
+
with torch.no_grad():
|
235 |
+
output = model.generate(
|
236 |
+
input_ids,
|
237 |
+
max_new_tokens=300,
|
238 |
+
do_sample=True,
|
239 |
+
top_k=5,
|
240 |
+
num_beams=1,
|
241 |
+
use_cache=False,
|
242 |
+
temperature=0.2,
|
243 |
+
repetition_penalty=1.1,
|
244 |
+
)
|
245 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
246 |
+
return find_last_sentence(generated_text)
|
247 |
+
except Exception as e:
|
248 |
+
print("Error during response generation:", e)
|
249 |
+
return "Response generation error: " + str(e)
|
250 |
+
|
251 |
+
# Function to find last sentence in generated text
|
252 |
+
def find_last_sentence(text):
|
253 |
+
sentence_endings = re.finditer(r'[।?!]', text)
|
254 |
+
end_positions = [ending.end() for ending in sentence_endings]
|
255 |
+
if end_positions:
|
256 |
+
return text[:end_positions[-1]]
|
257 |
+
return text
|
258 |
+
|
259 |
+
|
260 |
+
# In[9]:
|
261 |
+
|
262 |
+
|
263 |
+
# In[15]:
|
264 |
+
|
265 |
+
|
266 |
+
def generate_text_and_display_audio(row, model, tokenizer):
|
267 |
+
audio_file = row['Audio_Filename']
|
268 |
+
transcription = row['Transcription']
|
269 |
+
|
270 |
+
# Generate text
|
271 |
+
generated_text = generate_response(transcription)
|
272 |
+
|
273 |
+
generated_text = find_last_sentence(generated_text)
|
274 |
+
# Display audio
|
275 |
+
# display(ipd.Audio(audio_path))
|
276 |
+
return transcription, generated_text
|
277 |
+
# Display prompt and generated text
|
278 |
+
# print("Transcribed Text:", transcription)
|
279 |
+
# print("Generated Text:", generated_text)
|
280 |
+
|
281 |
+
|
282 |
+
# In[12]:
|
283 |
+
|
284 |
+
|
285 |
+
# In[16]:
|
286 |
+
|
287 |
+
def spectral_subtraction(audio_data, sample_rate):
|
288 |
+
# Compute short-time Fourier transform (STFT)
|
289 |
+
stft = librosa.stft(audio_data)
|
290 |
+
|
291 |
+
# Compute power spectrogram
|
292 |
+
power_spec = np.abs(stft)**2
|
293 |
+
|
294 |
+
# Estimate noise power spectrum
|
295 |
+
noise_power = np.median(power_spec, axis=1)
|
296 |
+
|
297 |
+
# Apply spectral subtraction
|
298 |
+
alpha = 2.0 # Adjustment factor, typically between 1.0 and 2.0
|
299 |
+
denoised_spec = np.maximum(power_spec - alpha * noise_power[:, np.newaxis], 0)
|
300 |
+
|
301 |
+
# Inverse STFT to obtain denoised audio
|
302 |
+
denoised_audio = librosa.istft(np.sqrt(denoised_spec) * np.exp(1j * np.angle(stft)))
|
303 |
+
|
304 |
+
return denoised_audio
|
305 |
+
|
306 |
+
def apply_compression(audio_data, sample_rate):
|
307 |
+
# Apply dynamic range compression
|
308 |
+
meter = pyln.Meter(sample_rate) # create BS.1770 meter
|
309 |
+
loudness = meter.integrated_loudness(audio_data)
|
310 |
+
|
311 |
+
# Normalize audio to target loudness of -24 LUFS
|
312 |
+
loud_norm = pyln.normalize.loudness(audio_data, loudness, -24.0)
|
313 |
+
|
314 |
+
return loud_norm
|
315 |
+
|
316 |
+
def process_audio(audio_file_path):
|
317 |
+
try:
|
318 |
+
# Read audio data
|
319 |
+
audio_data, sample_rate = librosa.load(audio_file_path)
|
320 |
+
print(f"Read audio data: {audio_file_path}, Sample Rate: {sample_rate}")
|
321 |
+
|
322 |
+
# Apply noise reduction using noisereduce
|
323 |
+
reduced_noise = nr.reduce_noise(y=audio_data, sr=sample_rate)
|
324 |
+
print("Noise reduction applied")
|
325 |
+
|
326 |
+
# Apply spectral subtraction for additional noise reduction
|
327 |
+
denoised_audio = spectral_subtraction(reduced_noise, sample_rate)
|
328 |
+
print("Spectral subtraction applied")
|
329 |
+
|
330 |
+
# Apply dynamic range compression to make foreground louder
|
331 |
+
compressed_audio = apply_compression(denoised_audio, sample_rate)
|
332 |
+
print("Dynamic range compression applied")
|
333 |
+
|
334 |
+
# Remove silent spaces
|
335 |
+
final_audio = librosa.effects.trim(compressed_audio)[0]
|
336 |
+
print("Silences trimmed")
|
337 |
+
|
338 |
+
# Save the final processed audio to a file with a fixed name
|
339 |
+
processed_file_path = 'processed_audio.wav'
|
340 |
+
sf.write(processed_file_path, final_audio, sample_rate)
|
341 |
+
print(f"Processed audio saved to: {processed_file_path}")
|
342 |
+
|
343 |
+
# Check if file exists to confirm it was saved
|
344 |
+
if not os.path.isfile(processed_file_path):
|
345 |
+
raise FileNotFoundError(f"Processed file not found: {processed_file_path}")
|
346 |
+
|
347 |
+
# Load the processed audio for transcription
|
348 |
+
processed_audio_data, _ = librosa.load(processed_file_path)
|
349 |
+
print(f"Processed audio reloaded for transcription: {processed_file_path}")
|
350 |
+
|
351 |
+
df = detect_language_for_audio_file(processed_file_path, lid_pipeline)
|
352 |
+
print(df)
|
353 |
+
df_transcription= perform_transcription(df)
|
354 |
+
print(df_transcription)
|
355 |
+
for index, row in df_transcription.iterrows():
|
356 |
+
print(index, row)
|
357 |
+
transcription, response = generate_text_and_display_audio(row, model, tokenizer)
|
358 |
+
|
359 |
+
|
360 |
+
# Transcribe audio
|
361 |
+
# transcription = transcribe_audio(processed_audio_data)
|
362 |
+
# print("Transcription completed")
|
363 |
+
|
364 |
+
# # Generate response
|
365 |
+
# response = generate_response(transcription)
|
366 |
+
# print("Response generated")
|
367 |
+
|
368 |
+
return processed_file_path, transcription, response
|
369 |
+
except Exception as e:
|
370 |
+
print("Error during audio processing:", e)
|
371 |
+
return "Error during audio processing:", str(e)
|
372 |
+
|
373 |
+
|
374 |
+
# Create Gradio interface
|
375 |
+
iface = gr.Interface(
|
376 |
+
fn=process_audio,
|
377 |
+
inputs=gr.Audio(label="Record Audio", type="filepath"),
|
378 |
+
outputs=[gr.Audio(label="Processed Audio"), gr.Textbox(label="Transcription"), gr.Textbox(label="Response")]
|
379 |
+
)
|
380 |
+
|
381 |
+
iface.launch(share=True)
|
382 |
+
|
383 |
+
|
384 |
+
# In[ ]:
|
385 |
+
|
386 |
+
|
387 |
+
# In[ ]:
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|