|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn.utils import weight_norm
|
|
|
|
from .modules import ConvNeXtBlock, ResBlock1, AdaLayerNorm
|
|
|
|
|
|
class Backbone(nn.Module):
|
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
|
|
C denotes output features, and L is the sequence length.
|
|
|
|
Returns:
|
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
|
|
and H denotes the model dimension.
|
|
"""
|
|
raise NotImplementedError("Subclasses must implement the forward method.")
|
|
|
|
|
|
class VocosBackbone(Backbone):
|
|
"""
|
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
|
|
|
Args:
|
|
input_channels (int): Number of input features channels.
|
|
dim (int): Hidden dimension of the model.
|
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
|
num_layers (int): Number of ConvNeXtBlock layers.
|
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
|
None means non-conditional model. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels: int,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
num_layers: int,
|
|
layer_scale_init_value: Optional[float] = None,
|
|
adanorm_num_embeddings: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.input_channels = input_channels
|
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
|
|
self.adanorm = adanorm_num_embeddings is not None
|
|
if adanorm_num_embeddings:
|
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
|
else:
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
|
|
self.convnext = nn.ModuleList(
|
|
[
|
|
ConvNeXtBlock(
|
|
dim=dim,
|
|
intermediate_dim=intermediate_dim,
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
adanorm_num_embeddings=adanorm_num_embeddings,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
bandwidth_id = kwargs.get('bandwidth_id', None)
|
|
x = self.embed(x)
|
|
if self.adanorm:
|
|
assert bandwidth_id is not None
|
|
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
|
|
else:
|
|
x = self.norm(x.transpose(1, 2))
|
|
x = x.transpose(1, 2)
|
|
for conv_block in self.convnext:
|
|
x = conv_block(x, cond_embedding_id=bandwidth_id)
|
|
x = self.final_layer_norm(x.transpose(1, 2))
|
|
return x
|
|
|
|
|
|
class VocosResNetBackbone(Backbone):
|
|
"""
|
|
Vocos backbone module built with ResBlocks.
|
|
|
|
Args:
|
|
input_channels (int): Number of input features channels.
|
|
dim (int): Hidden dimension of the model.
|
|
num_blocks (int): Number of ResBlock1 blocks.
|
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self, input_channels, dim, num_blocks, layer_scale_init_value=None,
|
|
):
|
|
super().__init__()
|
|
self.input_channels = input_channels
|
|
self.embed = weight_norm(nn.Conv1d(input_channels, dim, kernel_size=3, padding=1))
|
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
|
|
self.resnet = nn.Sequential(
|
|
*[ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) for _ in range(num_blocks)]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
x = self.embed(x)
|
|
x = self.resnet(x)
|
|
x = x.transpose(1, 2)
|
|
return x
|
|
|