|
import matplotlib
|
|
import numpy as np
|
|
import torch
|
|
from matplotlib import pyplot as plt
|
|
from pytorch_lightning import Callback
|
|
|
|
matplotlib.use("Agg")
|
|
|
|
|
|
def save_figure_to_numpy(fig: plt.Figure) -> np.ndarray:
|
|
"""
|
|
Save a matplotlib figure to a numpy array.
|
|
|
|
Args:
|
|
fig (Figure): Matplotlib figure object.
|
|
|
|
Returns:
|
|
ndarray: Numpy array representing the figure.
|
|
"""
|
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
return data
|
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Plot a spectrogram and convert it to a numpy array.
|
|
|
|
Args:
|
|
spectrogram (ndarray): Spectrogram data.
|
|
|
|
Returns:
|
|
ndarray: Numpy array representing the plotted spectrogram.
|
|
"""
|
|
spectrogram = spectrogram.astype(np.float32)
|
|
fig, ax = plt.subplots(figsize=(12, 3))
|
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
plt.colorbar(im, ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
|
|
fig.canvas.draw()
|
|
data = save_figure_to_numpy(fig)
|
|
plt.close()
|
|
return data
|
|
|
|
|
|
class GradNormCallback(Callback):
|
|
"""
|
|
Callback to log the gradient norm.
|
|
"""
|
|
|
|
def on_after_backward(self, trainer, model):
|
|
model.log("grad_norm", gradient_norm(model))
|
|
|
|
|
|
def gradient_norm(model: torch.nn.Module, norm_type: float = 2.0) -> torch.Tensor:
|
|
"""
|
|
Compute the gradient norm.
|
|
|
|
Args:
|
|
model (Module): PyTorch model.
|
|
norm_type (float, optional): Type of the norm. Defaults to 2.0.
|
|
|
|
Returns:
|
|
Tensor: Gradient norm.
|
|
"""
|
|
grads = [p.grad for p in model.parameters() if p.grad is not None]
|
|
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type) for g in grads]), norm_type)
|
|
return total_norm
|
|
|