File size: 19,834 Bytes
20d6bb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import os
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import torch
import random
import librosa
import yaml
import argparse
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import glob
from tqdm import tqdm
from modules.commons import recursive_munch, build_model, load_checkpoint
from optimizers import build_optimizer
from data.ft_dataset import build_ft_dataloader
from hf_utils import load_custom_model_from_hf
class Trainer:
def __init__(self,
config_path,
pretrained_ckpt_path,
data_dir,
run_name,
batch_size=0,
num_workers=0,
steps=1000,
save_interval=500,
max_epochs=1000,
device="cuda:0",
):
self.device = device
config = yaml.safe_load(open(config_path))
self.log_dir = os.path.join(config['log_dir'], run_name)
os.makedirs(self.log_dir, exist_ok=True)
# copy config file to log dir
os.system(f'cp {config_path} {self.log_dir}')
batch_size = config.get('batch_size', 10) if batch_size == 0 else batch_size
self.max_steps = steps
self.n_epochs = max_epochs
self.log_interval = config.get('log_interval', 10)
self.save_interval = save_interval
self.sr = config['preprocess_params'].get('sr', 22050)
self.hop_length = config['preprocess_params']['spect_params'].get('hop_length', 256)
self.win_length = config['preprocess_params']['spect_params'].get('win_length', 1024)
self.n_fft = config['preprocess_params']['spect_params'].get('n_fft', 1024)
preprocess_params = config['preprocess_params']
self.train_dataloader = build_ft_dataloader(
data_dir,
preprocess_params['spect_params'],
self.sr,
batch_size=batch_size,
num_workers=num_workers,
)
self.f0_condition = config['model_params']['DiT'].get('f0_condition', False)
self.build_sv_model(device, config)
self.build_semantic_fn(device, config)
if self.f0_condition:
self.build_f0_fn(device, config)
self.build_converter(device, config)
self.build_vocoder(device, config)
scheduler_params = {
"warmup_steps": 0,
"base_lr": 0.00001,
}
self.model_params = recursive_munch(config['model_params'])
self.model = build_model(self.model_params, stage='DiT')
_ = [self.model[key].to(device) for key in self.model]
self.model.cfm.estimator.setup_caches(max_batch_size=batch_size, max_seq_length=8192)
# initialize optimizers after preparing models for compatibility with FSDP
self.optimizer = build_optimizer({key: self.model[key] for key in self.model},
lr=float(scheduler_params['base_lr']))
if pretrained_ckpt_path is None:
# find latest checkpoint with name pattern of 'T2V_epoch_*_step_*.pth'
available_checkpoints = glob.glob(os.path.join(self.log_dir, "DiT_epoch_*_step_*.pth"))
if len(available_checkpoints) > 0:
# find the checkpoint that has the highest step number
latest_checkpoint = max(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
earliest_checkpoint = min(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
# delete the earliest checkpoint
if (
earliest_checkpoint != latest_checkpoint
and len(available_checkpoints) > 2
):
os.remove(earliest_checkpoint)
print(f"Removed {earliest_checkpoint}")
elif config.get('pretrained_model', ''):
latest_checkpoint = load_custom_model_from_hf("Plachta/Seed-VC", config['pretrained_model'], None)
else:
latest_checkpoint = ""
else:
assert os.path.exists(pretrained_ckpt_path), f"Pretrained checkpoint {pretrained_ckpt_path} not found"
latest_checkpoint = pretrained_ckpt_path
if os.path.exists(latest_checkpoint):
self.model, self.optimizer, self.epoch, self.iters = load_checkpoint(self.model, self.optimizer, latest_checkpoint,
load_only_params=True,
ignore_modules=[],
is_distributed=False)
print(f"Loaded checkpoint from {latest_checkpoint}")
else:
self.epoch, self.iters = 0, 0
print("Failed to load any checkpoint, this implies you are training from scratch.")
def build_sv_model(self, device, config):
# speaker verification model
from modules.campplus.DTDNN import CAMPPlus
self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_sd_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_sd = torch.load(campplus_sd_path, map_location='cpu')
self.campplus_model.load_state_dict(campplus_sd)
self.campplus_model.eval()
self.campplus_model.to(device)
self.sv_fn = self.campplus_model
def build_f0_fn(self, device, config):
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
self.rmvpe = RMVPE(model_path, is_half=False, device=device)
self.f0_fn = self.rmvpe
def build_converter(self, device, config):
# speaker perturbation model
from modules.openvoice.api import ToneColorConverter
ckpt_converter, config_converter = load_custom_model_from_hf("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", "converter/config.json")
self.tone_color_converter = ToneColorConverter(config_converter, device=device,)
self.tone_color_converter.load_ckpt(ckpt_converter)
self.tone_color_converter.model.eval()
se_db_path = load_custom_model_from_hf("Plachta/Seed-VC", "se_db.pt", None)
self.se_db = torch.load(se_db_path, map_location='cpu')
def build_vocoder(self, device, config):
vocoder_type = config['model_params']['vocoder']['type']
vocoder_name = config['model_params']['vocoder'].get('name', None)
if vocoder_type == 'bigvgan':
from modules.bigvgan import bigvgan
bigvgan_name = vocoder_name
self.bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
# remove weight norm in the model and set to eval mode
self.bigvgan_model.remove_weight_norm()
self.bigvgan_model = self.bigvgan_model.eval().to(device)
vocoder_fn = self.bigvgan_model
elif vocoder_type == 'hifigan':
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None)
self.hift_gen = HiFTGenerator(**hift_config['hift'],
f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
self.hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu'))
self.hift_gen.eval()
self.hift_gen.to(device)
vocoder_fn = self.hift_gen
else:
raise ValueError(f"Unsupported vocoder type: {vocoder_type}")
self.vocoder_fn = vocoder_fn
def build_semantic_fn(self, device, config):
# speech tokenizer
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
if speech_tokenizer_type == 'whisper':
from transformers import AutoFeatureExtractor, WhisperModel
whisper_model_name = config['model_params']['speech_tokenizer']['name']
self.whisper_model = WhisperModel.from_pretrained(whisper_model_name).to(device)
self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_model_name)
del self.whisper_model.decoder
def semantic_fn(waves_16k):
ori_inputs = self.whisper_feature_extractor([w16k.cpu().numpy() for w16k in waves_16k],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000,)
ori_input_features = self.whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = self.whisper_model.encoder(
ori_input_features.to(self.whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
return S_ori
elif speech_tokenizer_type == 'xlsr':
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
)
model_name = config['model_params']['speech_tokenizer']['name']
output_layer = config['model_params']['speech_tokenizer']['output_layer']
self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
self.wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
self.wav2vec_model.encoder.layers = self.wav2vec_model.encoder.layers[:output_layer]
self.wav2vec_model = self.wav2vec_model.to(device)
self.wav2vec_model = self.wav2vec_model.eval()
self.wav2vec_model = self.wav2vec_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [
waves_16k[bib].cpu().numpy()
for bib in range(len(waves_16k))
]
ori_inputs = self.wav2vec_feature_extractor(ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000).to(device)
with torch.no_grad():
ori_outputs = self.wav2vec_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
else:
raise ValueError(f"Unsupported speech tokenizer type: {speech_tokenizer_type}")
self.semantic_fn = semantic_fn
def train_one_step(self, batch):
waves, mels, wave_lengths, mel_input_length = batch
B = waves.size(0)
target_size = mels.size(2)
target = mels
target_lengths = mel_input_length
# get speaker embedding
if self.sr != 22050:
waves_22k = torchaudio.functional.resample(waves, self.sr, 22050)
wave_lengths_22k = (wave_lengths.float() * 22050 / self.sr).long()
else:
waves_22k = waves
wave_lengths_22k = wave_lengths
se_batch = self.tone_color_converter.extract_se(waves_22k, wave_lengths_22k)
ref_se_idx = torch.randint(0, len(self.se_db), (B,))
ref_se = self.se_db[ref_se_idx]
ref_se = ref_se.to(self.device)
# convert
converted_waves_22k = self.tone_color_converter.convert(waves_22k, wave_lengths_22k, se_batch, ref_se).squeeze(1)
if self.sr != 22050:
converted_waves = torchaudio.functional.resample(converted_waves_22k, 22050, self.sr)
else:
converted_waves = converted_waves_22k
waves_16k = torchaudio.functional.resample(waves, self.sr, 16000)
wave_lengths_16k = (wave_lengths.float() * 16000 / self.sr).long()
converted_waves_16k = torchaudio.functional.resample(converted_waves, self.sr, 16000)
# extract S_alt (perturbed speech tokens)
S_ori = self.semantic_fn(waves_16k)
S_alt = self.semantic_fn(converted_waves_16k)
if self.f0_condition:
F0_ori = self.rmvpe.infer_from_audio_batch(waves_16k)
else:
F0_ori = None
# interpolate speech token to match acoustic feature length
alt_cond, _, alt_codes, alt_commitment_loss, alt_codebook_loss = (
self.model.length_regulator(S_alt, ylens=target_lengths, f0=F0_ori))
ori_cond, _, ori_codes, ori_commitment_loss, ori_codebook_loss = (
self.model.length_regulator(S_ori, ylens=target_lengths, f0=F0_ori))
if alt_commitment_loss is None:
alt_commitment_loss = 0
alt_codebook_loss = 0
ori_commitment_loss = 0
ori_codebook_loss = 0
# randomly set a length as prompt
prompt_len_max = target_lengths - 1
prompt_len = (torch.rand([B], device=alt_cond.device) * prompt_len_max).floor().to(dtype=torch.long)
prompt_len[torch.rand([B], device=alt_cond.device) < 0.1] = 0
# for prompt cond token, it must be from ori_cond instead of alt_cond
cond = alt_cond.clone()
for bib in range(B):
cond[bib, :prompt_len[bib]] = ori_cond[bib, :prompt_len[bib]]
# diffusion target
common_min_len = min(target_size, cond.size(1))
target = target[:, :, :common_min_len]
cond = cond[:, :common_min_len]
target_lengths = torch.clamp(target_lengths, max=common_min_len)
x = target
# style vectors are extracted from prompt only to avoid inference time OOD
feat_list = []
for bib in range(B):
feat = kaldi.fbank(waves_16k[bib:bib + 1, :wave_lengths_16k[bib]],
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True)
feat_list.append(feat)
max_feat_len = max([feat.size(0) for feat in feat_list])
feat_lens = torch.tensor([feat.size(0) for feat in feat_list], dtype=torch.int32).to(self.device) // 2
feat_list = [
torch.nn.functional.pad(feat, (0, 0, 0, max_feat_len - feat.size(0)), value=float(feat.min().item()))
for feat in feat_list
]
y_list = []
with torch.no_grad():
for feat in feat_list:
y = self.sv_fn(feat.unsqueeze(0))
y_list.append(y)
y = torch.cat(y_list, dim=0)
loss, _ = self.model.cfm(x, target_lengths, prompt_len, cond, y)
loss_total = (loss +
(alt_commitment_loss + ori_commitment_loss) * 0.05 +
(ori_codebook_loss + alt_codebook_loss) * 0.15)
self.optimizer.zero_grad()
loss_total.backward()
grad_norm_g = torch.nn.utils.clip_grad_norm_(self.model.cfm.parameters(), 10.0)
grad_norm_g2 = torch.nn.utils.clip_grad_norm_(self.model.length_regulator.parameters(), 10.0)
self.optimizer.step('cfm')
self.optimizer.step('length_regulator')
self.optimizer.scheduler(key='cfm')
self.optimizer.scheduler(key='length_regulator')
return loss.detach().item()
def train_one_epoch(self):
_ = [self.model[key].train() for key in self.model]
for i, batch in enumerate(tqdm(self.train_dataloader)):
batch = [b.to(self.device) for b in batch]
loss = self.train_one_step(batch)
self.ema_loss = self.ema_loss * self.loss_smoothing_rate + loss * (1 - self.loss_smoothing_rate) if self.iters > 0 else loss
if self.iters % self.log_interval == 0:
print(f"epoch {self.epoch}, step {self.iters}, loss: {self.ema_loss}")
self.iters += 1
if self.iters >= self.max_steps:
break
if self.iters % self.save_interval == 0:
print('Saving..')
state = {
'net': {key: self.model[key].state_dict() for key in self.model},
'optimizer': self.optimizer.state_dict(),
'scheduler': self.optimizer.scheduler_state_dict(),
'iters': self.iters,
'epoch': self.epoch,
}
save_path = os.path.join(self.log_dir, 'DiT_epoch_%05d_step_%05d.pth' % (self.epoch, self.iters))
torch.save(state, save_path)
# find all checkpoints and remove old ones
checkpoints = glob.glob(os.path.join(self.log_dir, 'DiT_epoch_*.pth'))
if len(checkpoints) > 2:
# sort by step
checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
for cp in checkpoints[:-2]:
os.remove(cp)
def train(self):
self.ema_loss = 0
self.loss_smoothing_rate = 0.99
for epoch in range(self.n_epochs):
self.epoch = epoch
self.train_one_epoch()
if self.iters >= self.max_steps:
break
print('Saving..')
state = {
'net': {key: self.model[key].state_dict() for key in self.model},
}
os.makedirs(self.log_dir, exist_ok=True)
save_path = os.path.join(self.log_dir, 'ft_model.pth')
torch.save(state, save_path)
def main(args):
trainer = Trainer(
config_path=args.config,
pretrained_ckpt_path=args.pretrained_ckpt,
data_dir=args.dataset_dir,
run_name=args.run_name,
batch_size=args.batch_size,
steps=args.max_steps,
max_epochs=args.max_epochs,
save_interval=args.save_every,
num_workers=args.num_workers,
)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/presets/config_dit_mel_seed_uvit_xlsr_tiny.yml')
parser.add_argument('--pretrained-ckpt', type=str, default=None)
parser.add_argument('--dataset-dir', type=str, default='/path/to/dataset')
parser.add_argument('--run-name', type=str, default='my_run')
parser.add_argument('--batch-size', type=int, default=2)
parser.add_argument('--max-steps', type=int, default=1000)
parser.add_argument('--max-epochs', type=int, default=1000)
parser.add_argument('--save-every', type=int, default=500)
parser.add_argument('--num-workers', type=int, default=0)
args = parser.parse_args()
main(args) |