Spaces:
Running
Running
| import sys | |
| from pathlib import Path | |
| import torch | |
| from .. import MODEL_REPO_ID, logger | |
| from ..utils.base_model import BaseModel | |
| lib_path = Path(__file__).parent / "../../third_party" | |
| sys.path.append(str(lib_path)) | |
| from lanet.network_v0.model import PointModel | |
| lanet_path = Path(__file__).parent / "../../third_party/lanet" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| class LANet(BaseModel): | |
| default_conf = { | |
| "model_name": "PointModel_v0.pth", | |
| "keypoint_threshold": 0.1, | |
| "max_keypoints": 1024, | |
| } | |
| required_inputs = ["image"] | |
| def _init(self, conf): | |
| logger.info("Loading LANet model...") | |
| model_path = self._download_model( | |
| repo_id=MODEL_REPO_ID, | |
| filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]), | |
| ) | |
| self.net = PointModel(is_test=True) | |
| state_dict = torch.load(model_path, map_location="cpu") | |
| self.net.load_state_dict(state_dict["model_state"]) | |
| logger.info("Load LANet model done.") | |
| def _forward(self, data): | |
| image = data["image"] | |
| keypoints, scores, descriptors = self.net(image) | |
| _, _, Hc, Wc = descriptors.shape | |
| # Scores & Descriptors | |
| kpts_score = torch.cat([keypoints, scores], dim=1).view(3, -1).t() | |
| descriptors = descriptors.view(256, Hc, Wc).view(256, -1).t() | |
| # Filter based on confidence threshold | |
| descriptors = descriptors[kpts_score[:, 0] > self.conf["keypoint_threshold"], :] | |
| kpts_score = kpts_score[kpts_score[:, 0] > self.conf["keypoint_threshold"], :] | |
| keypoints = kpts_score[:, 1:] | |
| scores = kpts_score[:, 0] | |
| idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] | |
| keypoints = keypoints[idxs, :2] | |
| descriptors = descriptors[idxs] | |
| scores = scores[idxs] | |
| return { | |
| "keypoints": keypoints[None], | |
| "scores": scores[None], | |
| "descriptors": descriptors.T[None], | |
| } | |