Spaces:
Running
Running
File size: 2,443 Bytes
499e141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import torch
import torch.nn as nn
from .lcnn_hourglass import MultitaskHead, hg
class HourglassBackbone(nn.Module):
""" Hourglass backbone. """
def __init__(self, input_channel=1, depth=4, num_stacks=2,
num_blocks=1, num_classes=5):
super(HourglassBackbone, self).__init__()
self.head = MultitaskHead
self.net = hg(**{
"head": self.head,
"depth": depth,
"num_stacks": num_stacks,
"num_blocks": num_blocks,
"num_classes": num_classes,
"input_channels": input_channel
})
def forward(self, input_images):
return self.net(input_images)[1]
class SuperpointBackbone(nn.Module):
""" SuperPoint backbone. """
def __init__(self):
super(SuperpointBackbone, self).__init__()
self.relu = torch.nn.ReLU(inplace=True)
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4 = 64, 64, 128, 128
# Shared Encoder.
self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3,
stride=1, padding=1)
self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3,
stride=1, padding=1)
self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3,
stride=1, padding=1)
self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3,
stride=1, padding=1)
self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3,
stride=1, padding=1)
self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3,
stride=1, padding=1)
self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3,
stride=1, padding=1)
self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3,
stride=1, padding=1)
def forward(self, input_images):
# Shared Encoder.
x = self.relu(self.conv1a(input_images))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
return x
|