Spaces:
Running
Running
Update tabs/train/train.py
Browse files- tabs/train/train.py +1008 -1008
tabs/train/train.py
CHANGED
@@ -1,1008 +1,1008 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import sys
|
4 |
-
from multiprocessing import cpu_count
|
5 |
-
|
6 |
-
import gradio as gr
|
7 |
-
|
8 |
-
from assets.i18n.i18n import I18nAuto
|
9 |
-
from core import (
|
10 |
-
run_extract_script,
|
11 |
-
run_index_script,
|
12 |
-
run_preprocess_script,
|
13 |
-
run_prerequisites_script,
|
14 |
-
run_train_script,
|
15 |
-
)
|
16 |
-
from rvc.configs.config import get_gpu_info, get_number_of_gpus, max_vram_gpu
|
17 |
-
from rvc.lib.utils import format_title
|
18 |
-
from tabs.settings.sections.restart import stop_train
|
19 |
-
|
20 |
-
i18n = I18nAuto()
|
21 |
-
now_dir = os.getcwd()
|
22 |
-
sys.path.append(now_dir)
|
23 |
-
|
24 |
-
|
25 |
-
sup_audioext = {
|
26 |
-
"wav",
|
27 |
-
"mp3",
|
28 |
-
"flac",
|
29 |
-
"ogg",
|
30 |
-
"opus",
|
31 |
-
"m4a",
|
32 |
-
"mp4",
|
33 |
-
"aac",
|
34 |
-
"alac",
|
35 |
-
"wma",
|
36 |
-
"aiff",
|
37 |
-
"webm",
|
38 |
-
"ac3",
|
39 |
-
}
|
40 |
-
|
41 |
-
# Custom Pretraineds
|
42 |
-
pretraineds_custom_path = os.path.join(
|
43 |
-
now_dir, "rvc", "models", "pretraineds", "pretraineds_custom"
|
44 |
-
)
|
45 |
-
|
46 |
-
pretraineds_custom_path_relative = os.path.relpath(pretraineds_custom_path, now_dir)
|
47 |
-
|
48 |
-
custom_embedder_root = os.path.join(
|
49 |
-
now_dir, "rvc", "models", "embedders", "embedders_custom"
|
50 |
-
)
|
51 |
-
custom_embedder_root_relative = os.path.relpath(custom_embedder_root, now_dir)
|
52 |
-
|
53 |
-
os.makedirs(custom_embedder_root, exist_ok=True)
|
54 |
-
os.makedirs(pretraineds_custom_path_relative, exist_ok=True)
|
55 |
-
|
56 |
-
|
57 |
-
def get_pretrained_list(suffix):
|
58 |
-
return [
|
59 |
-
os.path.join(dirpath, filename)
|
60 |
-
for dirpath, _, filenames in os.walk(pretraineds_custom_path_relative)
|
61 |
-
for filename in filenames
|
62 |
-
if filename.endswith(".pth") and suffix in filename
|
63 |
-
]
|
64 |
-
|
65 |
-
|
66 |
-
pretraineds_list_d = get_pretrained_list("D")
|
67 |
-
pretraineds_list_g = get_pretrained_list("G")
|
68 |
-
|
69 |
-
|
70 |
-
def refresh_custom_pretraineds():
|
71 |
-
return (
|
72 |
-
{"choices": sorted(get_pretrained_list("G")), "__type__": "update"},
|
73 |
-
{"choices": sorted(get_pretrained_list("D")), "__type__": "update"},
|
74 |
-
)
|
75 |
-
|
76 |
-
|
77 |
-
# Dataset Creator
|
78 |
-
datasets_path = os.path.join(now_dir, "assets", "datasets")
|
79 |
-
|
80 |
-
if not os.path.exists(datasets_path):
|
81 |
-
os.makedirs(datasets_path)
|
82 |
-
|
83 |
-
datasets_path_relative = os.path.relpath(datasets_path, now_dir)
|
84 |
-
|
85 |
-
|
86 |
-
def get_datasets_list():
|
87 |
-
return [
|
88 |
-
dirpath
|
89 |
-
for dirpath, _, filenames in os.walk(datasets_path_relative)
|
90 |
-
if any(filename.endswith(tuple(sup_audioext)) for filename in filenames)
|
91 |
-
]
|
92 |
-
|
93 |
-
|
94 |
-
def refresh_datasets():
|
95 |
-
return {"choices": sorted(get_datasets_list()), "__type__": "update"}
|
96 |
-
|
97 |
-
|
98 |
-
# Model Names
|
99 |
-
models_path = os.path.join(now_dir, "logs")
|
100 |
-
|
101 |
-
|
102 |
-
def get_models_list():
|
103 |
-
return [
|
104 |
-
os.path.basename(dirpath)
|
105 |
-
for dirpath in os.listdir(models_path)
|
106 |
-
if os.path.isdir(os.path.join(models_path, dirpath))
|
107 |
-
and all(excluded not in dirpath for excluded in ["zips", "mute", "reference"])
|
108 |
-
]
|
109 |
-
|
110 |
-
|
111 |
-
def refresh_models():
|
112 |
-
return {"choices": sorted(get_models_list()), "__type__": "update"}
|
113 |
-
|
114 |
-
|
115 |
-
# Refresh Models and Datasets
|
116 |
-
def refresh_models_and_datasets():
|
117 |
-
return (
|
118 |
-
{"choices": sorted(get_models_list()), "__type__": "update"},
|
119 |
-
{"choices": sorted(get_datasets_list()), "__type__": "update"},
|
120 |
-
)
|
121 |
-
|
122 |
-
|
123 |
-
# Refresh Custom Embedders
|
124 |
-
def get_embedder_custom_list():
|
125 |
-
return [
|
126 |
-
os.path.join(dirpath, dirname)
|
127 |
-
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
128 |
-
for dirname in dirnames
|
129 |
-
]
|
130 |
-
|
131 |
-
|
132 |
-
def refresh_custom_embedder_list():
|
133 |
-
return {"choices": sorted(get_embedder_custom_list()), "__type__": "update"}
|
134 |
-
|
135 |
-
|
136 |
-
# Drop Model
|
137 |
-
def save_drop_model(dropbox):
|
138 |
-
if ".pth" not in dropbox:
|
139 |
-
gr.Info(
|
140 |
-
i18n(
|
141 |
-
"The file you dropped is not a valid pretrained file. Please try again."
|
142 |
-
)
|
143 |
-
)
|
144 |
-
else:
|
145 |
-
file_name = os.path.basename(dropbox)
|
146 |
-
pretrained_path = os.path.join(pretraineds_custom_path_relative, file_name)
|
147 |
-
if os.path.exists(pretrained_path):
|
148 |
-
os.remove(pretrained_path)
|
149 |
-
shutil.copy(dropbox, pretrained_path)
|
150 |
-
gr.Info(
|
151 |
-
i18n(
|
152 |
-
"Click the refresh button to see the pretrained file in the dropdown menu."
|
153 |
-
)
|
154 |
-
)
|
155 |
-
return None
|
156 |
-
|
157 |
-
|
158 |
-
# Drop Dataset
|
159 |
-
def save_drop_dataset_audio(dropbox, dataset_name):
|
160 |
-
if not dataset_name:
|
161 |
-
gr.Info("Please enter a valid dataset name. Please try again.")
|
162 |
-
return None, None
|
163 |
-
else:
|
164 |
-
file_extension = os.path.splitext(dropbox)[1][1:].lower()
|
165 |
-
if file_extension not in sup_audioext:
|
166 |
-
gr.Info("The file you dropped is not a valid audio file. Please try again.")
|
167 |
-
else:
|
168 |
-
dataset_name = format_title(dataset_name)
|
169 |
-
audio_file = format_title(os.path.basename(dropbox))
|
170 |
-
dataset_path = os.path.join(now_dir, "assets", "datasets", dataset_name)
|
171 |
-
if not os.path.exists(dataset_path):
|
172 |
-
os.makedirs(dataset_path)
|
173 |
-
destination_path = os.path.join(dataset_path, audio_file)
|
174 |
-
if os.path.exists(destination_path):
|
175 |
-
os.remove(destination_path)
|
176 |
-
shutil.copy(dropbox, destination_path)
|
177 |
-
gr.Info(
|
178 |
-
i18n(
|
179 |
-
"The audio file has been successfully added to the dataset. Please click the preprocess button."
|
180 |
-
)
|
181 |
-
)
|
182 |
-
dataset_path = os.path.dirname(destination_path)
|
183 |
-
relative_dataset_path = os.path.relpath(dataset_path, now_dir)
|
184 |
-
|
185 |
-
return None, relative_dataset_path
|
186 |
-
|
187 |
-
|
188 |
-
# Drop Custom Embedder
|
189 |
-
def create_folder_and_move_files(folder_name, bin_file, config_file):
|
190 |
-
if not folder_name:
|
191 |
-
return "Folder name must not be empty."
|
192 |
-
|
193 |
-
folder_name = os.path.join(custom_embedder_root, folder_name)
|
194 |
-
os.makedirs(folder_name, exist_ok=True)
|
195 |
-
|
196 |
-
if bin_file:
|
197 |
-
bin_file_path = os.path.join(folder_name, os.path.basename(bin_file))
|
198 |
-
shutil.copy(bin_file, bin_file_path)
|
199 |
-
|
200 |
-
if config_file:
|
201 |
-
config_file_path = os.path.join(folder_name, os.path.basename(config_file))
|
202 |
-
shutil.copy(config_file, config_file_path)
|
203 |
-
|
204 |
-
return f"Files moved to folder {folder_name}"
|
205 |
-
|
206 |
-
|
207 |
-
def refresh_embedders_folders():
|
208 |
-
custom_embedders = [
|
209 |
-
os.path.join(dirpath, dirname)
|
210 |
-
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
211 |
-
for dirname in dirnames
|
212 |
-
]
|
213 |
-
return custom_embedders
|
214 |
-
|
215 |
-
|
216 |
-
# Export
|
217 |
-
## Get Pth and Index Files
|
218 |
-
def get_pth_list():
|
219 |
-
return [
|
220 |
-
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
221 |
-
for dirpath, _, filenames in os.walk(models_path)
|
222 |
-
for filename in filenames
|
223 |
-
if filename.endswith(".pth")
|
224 |
-
]
|
225 |
-
|
226 |
-
|
227 |
-
def get_index_list():
|
228 |
-
return [
|
229 |
-
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
230 |
-
for dirpath, _, filenames in os.walk(models_path)
|
231 |
-
for filename in filenames
|
232 |
-
if filename.endswith(".index") and "trained" not in filename
|
233 |
-
]
|
234 |
-
|
235 |
-
|
236 |
-
def refresh_pth_and_index_list():
|
237 |
-
return (
|
238 |
-
{"choices": sorted(get_pth_list()), "__type__": "update"},
|
239 |
-
{"choices": sorted(get_index_list()), "__type__": "update"},
|
240 |
-
)
|
241 |
-
|
242 |
-
|
243 |
-
## Export Pth and Index Files
|
244 |
-
def export_pth(pth_path):
|
245 |
-
if pth_path and os.path.exists(pth_path):
|
246 |
-
return pth_path
|
247 |
-
return None
|
248 |
-
|
249 |
-
|
250 |
-
def export_index(index_path):
|
251 |
-
if index_path and os.path.exists(index_path):
|
252 |
-
return index_path
|
253 |
-
return None
|
254 |
-
|
255 |
-
|
256 |
-
## Upload to Google Drive
|
257 |
-
def upload_to_google_drive(pth_path, index_path):
|
258 |
-
def upload_file(file_path):
|
259 |
-
if file_path:
|
260 |
-
try:
|
261 |
-
gr.Info(f"Uploading {pth_path} to Google Drive...")
|
262 |
-
google_drive_folder = "/content/drive/MyDrive/ApplioExported"
|
263 |
-
if not os.path.exists(google_drive_folder):
|
264 |
-
os.makedirs(google_drive_folder)
|
265 |
-
google_drive_file_path = os.path.join(
|
266 |
-
google_drive_folder, os.path.basename(file_path)
|
267 |
-
)
|
268 |
-
if os.path.exists(google_drive_file_path):
|
269 |
-
os.remove(google_drive_file_path)
|
270 |
-
shutil.copy2(file_path, google_drive_file_path)
|
271 |
-
gr.Info("File uploaded successfully.")
|
272 |
-
except Exception as error:
|
273 |
-
print(f"An error occurred uploading to Google Drive: {error}")
|
274 |
-
gr.Info("Error uploading to Google Drive")
|
275 |
-
|
276 |
-
upload_file(pth_path)
|
277 |
-
upload_file(index_path)
|
278 |
-
|
279 |
-
|
280 |
-
# Train Tab
|
281 |
-
def train_tab():
|
282 |
-
# Model settings section
|
283 |
-
with gr.Accordion(i18n("Model Settings")):
|
284 |
-
with gr.Row():
|
285 |
-
with gr.Column():
|
286 |
-
model_name = gr.Dropdown(
|
287 |
-
label=i18n("Model Name"),
|
288 |
-
info=i18n("Name of the new model."),
|
289 |
-
choices=get_models_list(),
|
290 |
-
value="my-project",
|
291 |
-
interactive=True,
|
292 |
-
allow_custom_value=True,
|
293 |
-
)
|
294 |
-
architecture = gr.Radio(
|
295 |
-
label=i18n("Architecture"),
|
296 |
-
info=i18n(
|
297 |
-
"Choose the model architecture:\n- **RVC (V2)**: Default option, compatible with all clients.\n- **Applio**: Advanced quality with improved vocoders and higher sample rates, Applio-only."
|
298 |
-
),
|
299 |
-
choices=["RVC", "Applio"],
|
300 |
-
value="RVC",
|
301 |
-
interactive=True,
|
302 |
-
visible=True,
|
303 |
-
)
|
304 |
-
with gr.Column():
|
305 |
-
sampling_rate = gr.Radio(
|
306 |
-
label=i18n("Sampling Rate"),
|
307 |
-
info=i18n("The sampling rate of the audio files."),
|
308 |
-
choices=["32000", "40000", "48000"],
|
309 |
-
value="40000",
|
310 |
-
interactive=True,
|
311 |
-
)
|
312 |
-
vocoder = gr.Radio(
|
313 |
-
label=i18n("Vocoder"),
|
314 |
-
info=i18n(
|
315 |
-
"Choose the vocoder for audio synthesis:\n- **HiFi-GAN**: Default option, compatible with all clients.\n- **MRF HiFi-GAN**: Higher fidelity, Applio-only.\n- **RefineGAN**: Superior audio quality, Applio-only."
|
316 |
-
),
|
317 |
-
choices=["HiFi-GAN", "MRF HiFi-GAN", "RefineGAN"],
|
318 |
-
value="HiFi-GAN",
|
319 |
-
interactive=False,
|
320 |
-
visible=True,
|
321 |
-
)
|
322 |
-
with gr.Accordion(
|
323 |
-
i18n("Advanced Settings"),
|
324 |
-
open=False,
|
325 |
-
):
|
326 |
-
with gr.Row():
|
327 |
-
with gr.Column():
|
328 |
-
cpu_cores = gr.Slider(
|
329 |
-
1,
|
330 |
-
min(cpu_count(), 32), # max 32 parallel processes
|
331 |
-
min(cpu_count(), 32),
|
332 |
-
step=1,
|
333 |
-
label=i18n("CPU Cores"),
|
334 |
-
info=i18n(
|
335 |
-
"The number of CPU cores to use in the extraction process. The default setting are your cpu cores, which is recommended for most cases."
|
336 |
-
),
|
337 |
-
interactive=True,
|
338 |
-
)
|
339 |
-
|
340 |
-
with gr.Column():
|
341 |
-
gpu = gr.Textbox(
|
342 |
-
label=i18n("GPU Number"),
|
343 |
-
info=i18n(
|
344 |
-
"Specify the number of GPUs you wish to utilize for extracting by entering them separated by hyphens (-)."
|
345 |
-
),
|
346 |
-
placeholder=i18n("0 to ∞ separated by -"),
|
347 |
-
value=str(get_number_of_gpus()),
|
348 |
-
interactive=True,
|
349 |
-
)
|
350 |
-
gr.Textbox(
|
351 |
-
label=i18n("GPU Information"),
|
352 |
-
info=i18n("The GPU information will be displayed here."),
|
353 |
-
value=get_gpu_info(),
|
354 |
-
interactive=False,
|
355 |
-
)
|
356 |
-
# Preprocess section
|
357 |
-
with gr.Accordion(i18n("Preprocess")):
|
358 |
-
dataset_path = gr.Dropdown(
|
359 |
-
label=i18n("Dataset Path"),
|
360 |
-
info=i18n("Path to the dataset folder."),
|
361 |
-
# placeholder=i18n("Enter dataset path"),
|
362 |
-
choices=get_datasets_list(),
|
363 |
-
allow_custom_value=True,
|
364 |
-
interactive=True,
|
365 |
-
)
|
366 |
-
dataset_creator = gr.Checkbox(
|
367 |
-
label=i18n("Dataset Creator"),
|
368 |
-
value=False,
|
369 |
-
interactive=True,
|
370 |
-
visible=True,
|
371 |
-
)
|
372 |
-
with gr.Column(visible=False) as dataset_creator_settings:
|
373 |
-
with gr.Accordion(i18n("Dataset Creator")):
|
374 |
-
dataset_name = gr.Textbox(
|
375 |
-
label=i18n("Dataset Name"),
|
376 |
-
info=i18n("Name of the new dataset."),
|
377 |
-
placeholder=i18n("Enter dataset name"),
|
378 |
-
interactive=True,
|
379 |
-
)
|
380 |
-
upload_audio_dataset = gr.File(
|
381 |
-
label=i18n("Upload Audio Dataset"),
|
382 |
-
type="filepath",
|
383 |
-
interactive=True,
|
384 |
-
)
|
385 |
-
refresh = gr.Button(i18n("Refresh"))
|
386 |
-
|
387 |
-
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
388 |
-
cut_preprocess = gr.Radio(
|
389 |
-
label=i18n("Audio cutting"),
|
390 |
-
info=i18n(
|
391 |
-
"Audio file slicing method: Select 'Skip' if the files are already pre-sliced, 'Simple' if excessive silence has already been removed from the files, or 'Automatic' for automatic silence detection and slicing around it."
|
392 |
-
),
|
393 |
-
choices=["Skip", "Simple", "Automatic"],
|
394 |
-
value="Automatic",
|
395 |
-
interactive=True,
|
396 |
-
)
|
397 |
-
with gr.Row():
|
398 |
-
chunk_len = gr.Slider(
|
399 |
-
0.5,
|
400 |
-
5.0,
|
401 |
-
3.0,
|
402 |
-
step=0.1,
|
403 |
-
label=i18n("Chunk length (sec)"),
|
404 |
-
info=i18n("Length of the audio slice for 'Simple' method."),
|
405 |
-
interactive=True,
|
406 |
-
)
|
407 |
-
overlap_len = gr.Slider(
|
408 |
-
0.0,
|
409 |
-
0.4,
|
410 |
-
0.3,
|
411 |
-
step=0.1,
|
412 |
-
label=i18n("Overlap length (sec)"),
|
413 |
-
info=i18n(
|
414 |
-
"Length of the overlap between slices for 'Simple' method."
|
415 |
-
),
|
416 |
-
interactive=True,
|
417 |
-
)
|
418 |
-
|
419 |
-
with gr.Row():
|
420 |
-
process_effects = gr.Checkbox(
|
421 |
-
label=i18n("Process effects"),
|
422 |
-
info=i18n(
|
423 |
-
"It's recommended to deactivate this option if your dataset has already been processed."
|
424 |
-
),
|
425 |
-
value=True,
|
426 |
-
interactive=True,
|
427 |
-
visible=True,
|
428 |
-
)
|
429 |
-
noise_reduction = gr.Checkbox(
|
430 |
-
label=i18n("Noise Reduction"),
|
431 |
-
info=i18n(
|
432 |
-
"It's recommended keep deactivate this option if your dataset has already been processed."
|
433 |
-
),
|
434 |
-
value=False,
|
435 |
-
interactive=True,
|
436 |
-
visible=True,
|
437 |
-
)
|
438 |
-
clean_strength = gr.Slider(
|
439 |
-
minimum=0,
|
440 |
-
maximum=1,
|
441 |
-
label=i18n("Noise Reduction Strength"),
|
442 |
-
info=i18n(
|
443 |
-
"Set the clean-up level to the audio you want, the more you increase it the more it will clean up, but it is possible that the audio will be more compressed."
|
444 |
-
),
|
445 |
-
visible=False,
|
446 |
-
value=0.5,
|
447 |
-
interactive=True,
|
448 |
-
)
|
449 |
-
preprocess_output_info = gr.Textbox(
|
450 |
-
label=i18n("Output Information"),
|
451 |
-
info=i18n("The output information will be displayed here."),
|
452 |
-
value="",
|
453 |
-
max_lines=8,
|
454 |
-
interactive=False,
|
455 |
-
)
|
456 |
-
|
457 |
-
with gr.Row():
|
458 |
-
preprocess_button = gr.Button(i18n("Preprocess Dataset"))
|
459 |
-
preprocess_button.click(
|
460 |
-
fn=run_preprocess_script,
|
461 |
-
inputs=[
|
462 |
-
model_name,
|
463 |
-
dataset_path,
|
464 |
-
sampling_rate,
|
465 |
-
cpu_cores,
|
466 |
-
cut_preprocess,
|
467 |
-
process_effects,
|
468 |
-
noise_reduction,
|
469 |
-
clean_strength,
|
470 |
-
chunk_len,
|
471 |
-
overlap_len,
|
472 |
-
],
|
473 |
-
outputs=[preprocess_output_info],
|
474 |
-
)
|
475 |
-
|
476 |
-
# Extract section
|
477 |
-
with gr.Accordion(i18n("Extract")):
|
478 |
-
with gr.Row():
|
479 |
-
f0_method = gr.Radio(
|
480 |
-
label=i18n("Pitch extraction algorithm"),
|
481 |
-
info=i18n(
|
482 |
-
"Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
|
483 |
-
),
|
484 |
-
choices=["crepe", "crepe-tiny", "rmvpe"],
|
485 |
-
value="rmvpe",
|
486 |
-
interactive=True,
|
487 |
-
)
|
488 |
-
|
489 |
-
embedder_model = gr.Radio(
|
490 |
-
label=i18n("Embedder Model"),
|
491 |
-
info=i18n("Model used for learning speaker embedding."),
|
492 |
-
choices=[
|
493 |
-
"contentvec",
|
494 |
-
"chinese-hubert-base",
|
495 |
-
"japanese-hubert-base",
|
496 |
-
"korean-hubert-base",
|
497 |
-
"custom",
|
498 |
-
],
|
499 |
-
value="contentvec",
|
500 |
-
interactive=True,
|
501 |
-
)
|
502 |
-
include_mutes = gr.Slider(
|
503 |
-
0,
|
504 |
-
10,
|
505 |
-
2,
|
506 |
-
step=1,
|
507 |
-
label=i18n("Silent training files"),
|
508 |
-
info=i18n(
|
509 |
-
"Adding several silent files to the training set enables the model to handle pure silence in inferred audio files. Select 0 if your dataset is clean and already contains segments of pure silence."
|
510 |
-
),
|
511 |
-
value=True,
|
512 |
-
interactive=True,
|
513 |
-
)
|
514 |
-
hop_length = gr.Slider(
|
515 |
-
1,
|
516 |
-
512,
|
517 |
-
128,
|
518 |
-
step=1,
|
519 |
-
label=i18n("Hop Length"),
|
520 |
-
info=i18n(
|
521 |
-
"Denotes the duration it takes for the system to transition to a significant pitch change. Smaller hop lengths require more time for inference but tend to yield higher pitch accuracy."
|
522 |
-
),
|
523 |
-
visible=False,
|
524 |
-
interactive=True,
|
525 |
-
)
|
526 |
-
with gr.Row(visible=False) as embedder_custom:
|
527 |
-
with gr.Accordion("Custom Embedder", open=True):
|
528 |
-
with gr.Row():
|
529 |
-
embedder_model_custom = gr.Dropdown(
|
530 |
-
label="Select Custom Embedder",
|
531 |
-
choices=refresh_embedders_folders(),
|
532 |
-
interactive=True,
|
533 |
-
allow_custom_value=True,
|
534 |
-
)
|
535 |
-
refresh_embedders_button = gr.Button("Refresh embedders")
|
536 |
-
folder_name_input = gr.Textbox(label="Folder Name", interactive=True)
|
537 |
-
with gr.Row():
|
538 |
-
bin_file_upload = gr.File(
|
539 |
-
label="Upload .bin", type="filepath", interactive=True
|
540 |
-
)
|
541 |
-
config_file_upload = gr.File(
|
542 |
-
label="Upload .json", type="filepath", interactive=True
|
543 |
-
)
|
544 |
-
move_files_button = gr.Button("Move files to custom embedder folder")
|
545 |
-
|
546 |
-
extract_output_info = gr.Textbox(
|
547 |
-
label=i18n("Output Information"),
|
548 |
-
info=i18n("The output information will be displayed here."),
|
549 |
-
value="",
|
550 |
-
max_lines=8,
|
551 |
-
interactive=False,
|
552 |
-
)
|
553 |
-
extract_button = gr.Button(i18n("Extract Features"))
|
554 |
-
extract_button.click(
|
555 |
-
fn=run_extract_script,
|
556 |
-
inputs=[
|
557 |
-
model_name,
|
558 |
-
f0_method,
|
559 |
-
hop_length,
|
560 |
-
cpu_cores,
|
561 |
-
gpu,
|
562 |
-
sampling_rate,
|
563 |
-
embedder_model,
|
564 |
-
embedder_model_custom,
|
565 |
-
include_mutes,
|
566 |
-
],
|
567 |
-
outputs=[extract_output_info],
|
568 |
-
)
|
569 |
-
|
570 |
-
# Training section
|
571 |
-
with gr.Accordion(i18n("Training")):
|
572 |
-
with gr.Row():
|
573 |
-
batch_size = gr.Slider(
|
574 |
-
1,
|
575 |
-
50,
|
576 |
-
max_vram_gpu(0),
|
577 |
-
step=1,
|
578 |
-
label=i18n("Batch Size"),
|
579 |
-
info=i18n(
|
580 |
-
"It's advisable to align it with the available VRAM of your GPU. A setting of 4 offers improved accuracy but slower processing, while 8 provides faster and standard results."
|
581 |
-
),
|
582 |
-
interactive=True,
|
583 |
-
)
|
584 |
-
save_every_epoch = gr.Slider(
|
585 |
-
1,
|
586 |
-
100,
|
587 |
-
10,
|
588 |
-
step=1,
|
589 |
-
label=i18n("Save Every Epoch"),
|
590 |
-
info=i18n("Determine at how many epochs the model will saved at."),
|
591 |
-
interactive=True,
|
592 |
-
)
|
593 |
-
total_epoch = gr.Slider(
|
594 |
-
1,
|
595 |
-
10000,
|
596 |
-
500,
|
597 |
-
step=1,
|
598 |
-
label=i18n("Total Epoch"),
|
599 |
-
info=i18n(
|
600 |
-
"Specifies the overall quantity of epochs for the model training process."
|
601 |
-
),
|
602 |
-
interactive=True,
|
603 |
-
)
|
604 |
-
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
605 |
-
with gr.Row():
|
606 |
-
with gr.Column():
|
607 |
-
save_only_latest = gr.Checkbox(
|
608 |
-
label=i18n("Save Only Latest"),
|
609 |
-
info=i18n(
|
610 |
-
"Enabling this setting will result in the G and D files saving only their most recent versions, effectively conserving storage space."
|
611 |
-
),
|
612 |
-
value=True,
|
613 |
-
interactive=True,
|
614 |
-
)
|
615 |
-
save_every_weights = gr.Checkbox(
|
616 |
-
label=i18n("Save Every Weights"),
|
617 |
-
info=i18n(
|
618 |
-
"This setting enables you to save the weights of the model at the conclusion of each epoch."
|
619 |
-
),
|
620 |
-
value=True,
|
621 |
-
interactive=True,
|
622 |
-
)
|
623 |
-
pretrained = gr.Checkbox(
|
624 |
-
label=i18n("Pretrained"),
|
625 |
-
info=i18n(
|
626 |
-
"Utilize pretrained models when training your own. This approach reduces training duration and enhances overall quality."
|
627 |
-
),
|
628 |
-
value=True,
|
629 |
-
interactive=True,
|
630 |
-
)
|
631 |
-
with gr.Column():
|
632 |
-
cleanup = gr.Checkbox(
|
633 |
-
label=i18n("Fresh Training"),
|
634 |
-
info=i18n(
|
635 |
-
"Enable this setting only if you are training a new model from scratch or restarting the training. Deletes all previously generated weights and tensorboard logs."
|
636 |
-
),
|
637 |
-
value=False,
|
638 |
-
interactive=True,
|
639 |
-
)
|
640 |
-
cache_dataset_in_gpu = gr.Checkbox(
|
641 |
-
label=i18n("Cache Dataset in GPU"),
|
642 |
-
info=i18n(
|
643 |
-
"Cache the dataset in GPU memory to speed up the training process."
|
644 |
-
),
|
645 |
-
value=False,
|
646 |
-
interactive=True,
|
647 |
-
)
|
648 |
-
checkpointing = gr.Checkbox(
|
649 |
-
label=i18n("Checkpointing"),
|
650 |
-
info=i18n(
|
651 |
-
"Enables memory-efficient training. This reduces VRAM usage at the cost of slower training speed. It is useful for GPUs with limited memory (e.g., <6GB VRAM) or when training with a batch size larger than what your GPU can normally accommodate."
|
652 |
-
),
|
653 |
-
value=False,
|
654 |
-
interactive=True,
|
655 |
-
)
|
656 |
-
with gr.Row():
|
657 |
-
custom_pretrained = gr.Checkbox(
|
658 |
-
label=i18n("Custom Pretrained"),
|
659 |
-
info=i18n(
|
660 |
-
"Utilizing custom pretrained models can lead to superior results, as selecting the most suitable pretrained models tailored to the specific use case can significantly enhance performance."
|
661 |
-
),
|
662 |
-
value=False,
|
663 |
-
interactive=True,
|
664 |
-
)
|
665 |
-
overtraining_detector = gr.Checkbox(
|
666 |
-
label=i18n("Overtraining Detector"),
|
667 |
-
info=i18n(
|
668 |
-
"Detect overtraining to prevent the model from learning the training data too well and losing the ability to generalize to new data."
|
669 |
-
),
|
670 |
-
value=False,
|
671 |
-
interactive=True,
|
672 |
-
)
|
673 |
-
with gr.Row():
|
674 |
-
with gr.Column(visible=False) as pretrained_custom_settings:
|
675 |
-
with gr.Accordion(i18n("Pretrained Custom Settings")):
|
676 |
-
upload_pretrained = gr.File(
|
677 |
-
label=i18n("Upload Pretrained Model"),
|
678 |
-
type="filepath",
|
679 |
-
interactive=True,
|
680 |
-
)
|
681 |
-
refresh_custom_pretaineds_button = gr.Button(
|
682 |
-
i18n("Refresh Custom Pretraineds")
|
683 |
-
)
|
684 |
-
g_pretrained_path = gr.Dropdown(
|
685 |
-
label=i18n("Custom Pretrained G"),
|
686 |
-
info=i18n(
|
687 |
-
"Select the custom pretrained model for the generator."
|
688 |
-
),
|
689 |
-
choices=sorted(pretraineds_list_g),
|
690 |
-
interactive=True,
|
691 |
-
allow_custom_value=True,
|
692 |
-
)
|
693 |
-
d_pretrained_path = gr.Dropdown(
|
694 |
-
label=i18n("Custom Pretrained D"),
|
695 |
-
info=i18n(
|
696 |
-
"Select the custom pretrained model for the discriminator."
|
697 |
-
),
|
698 |
-
choices=sorted(pretraineds_list_d),
|
699 |
-
interactive=True,
|
700 |
-
allow_custom_value=True,
|
701 |
-
)
|
702 |
-
|
703 |
-
with gr.Column(visible=False) as overtraining_settings:
|
704 |
-
with gr.Accordion(i18n("Overtraining Detector Settings")):
|
705 |
-
overtraining_threshold = gr.Slider(
|
706 |
-
1,
|
707 |
-
100,
|
708 |
-
50,
|
709 |
-
step=1,
|
710 |
-
label=i18n("Overtraining Threshold"),
|
711 |
-
info=i18n(
|
712 |
-
"Set the maximum number of epochs you want your model to stop training if no improvement is detected."
|
713 |
-
),
|
714 |
-
interactive=True,
|
715 |
-
)
|
716 |
-
index_algorithm = gr.Radio(
|
717 |
-
label=i18n("Index Algorithm"),
|
718 |
-
info=i18n(
|
719 |
-
"KMeans is a clustering algorithm that divides the dataset into K clusters. This setting is particularly useful for large datasets."
|
720 |
-
),
|
721 |
-
choices=["Auto", "Faiss", "KMeans"],
|
722 |
-
value="Auto",
|
723 |
-
interactive=True,
|
724 |
-
)
|
725 |
-
|
726 |
-
def enforce_terms(terms_accepted, *args):
|
727 |
-
if not terms_accepted:
|
728 |
-
message = "You must agree to the Terms of Use to proceed."
|
729 |
-
gr.Info(message)
|
730 |
-
return message
|
731 |
-
return run_train_script(*args)
|
732 |
-
|
733 |
-
terms_checkbox = gr.Checkbox(
|
734 |
-
label=i18n("I agree to the terms of use"),
|
735 |
-
info=i18n(
|
736 |
-
"Please ensure compliance with the terms and conditions detailed in [this document](https://github.com/IAHispano/Applio/blob/main/TERMS_OF_USE.md) before proceeding with your training."
|
737 |
-
),
|
738 |
-
value=
|
739 |
-
interactive=True,
|
740 |
-
)
|
741 |
-
train_output_info = gr.Textbox(
|
742 |
-
label=i18n("Output Information"),
|
743 |
-
info=i18n("The output information will be displayed here."),
|
744 |
-
value="",
|
745 |
-
max_lines=8,
|
746 |
-
interactive=False,
|
747 |
-
)
|
748 |
-
|
749 |
-
with gr.Row():
|
750 |
-
train_button = gr.Button(i18n("Start Training"))
|
751 |
-
train_button.click(
|
752 |
-
fn=enforce_terms,
|
753 |
-
inputs=[
|
754 |
-
terms_checkbox,
|
755 |
-
model_name,
|
756 |
-
save_every_epoch,
|
757 |
-
save_only_latest,
|
758 |
-
save_every_weights,
|
759 |
-
total_epoch,
|
760 |
-
sampling_rate,
|
761 |
-
batch_size,
|
762 |
-
gpu,
|
763 |
-
overtraining_detector,
|
764 |
-
overtraining_threshold,
|
765 |
-
pretrained,
|
766 |
-
cleanup,
|
767 |
-
index_algorithm,
|
768 |
-
cache_dataset_in_gpu,
|
769 |
-
custom_pretrained,
|
770 |
-
g_pretrained_path,
|
771 |
-
d_pretrained_path,
|
772 |
-
vocoder,
|
773 |
-
checkpointing,
|
774 |
-
],
|
775 |
-
outputs=[train_output_info],
|
776 |
-
)
|
777 |
-
|
778 |
-
stop_train_button = gr.Button(i18n("Stop Training"), visible=False)
|
779 |
-
stop_train_button.click(
|
780 |
-
fn=stop_train,
|
781 |
-
inputs=[model_name],
|
782 |
-
outputs=[],
|
783 |
-
)
|
784 |
-
|
785 |
-
index_button = gr.Button(i18n("Generate Index"))
|
786 |
-
index_button.click(
|
787 |
-
fn=run_index_script,
|
788 |
-
inputs=[model_name, index_algorithm],
|
789 |
-
outputs=[train_output_info],
|
790 |
-
)
|
791 |
-
|
792 |
-
# Export Model section
|
793 |
-
with gr.Accordion(i18n("Export Model"), open=False):
|
794 |
-
if not os.name == "nt":
|
795 |
-
gr.Markdown(
|
796 |
-
i18n(
|
797 |
-
"The button 'Upload' is only for google colab: Uploads the exported files to the ApplioExported folder in your Google Drive."
|
798 |
-
)
|
799 |
-
)
|
800 |
-
with gr.Row():
|
801 |
-
with gr.Column():
|
802 |
-
pth_file_export = gr.File(
|
803 |
-
label=i18n("Exported Pth file"),
|
804 |
-
type="filepath",
|
805 |
-
value=None,
|
806 |
-
interactive=False,
|
807 |
-
)
|
808 |
-
pth_dropdown_export = gr.Dropdown(
|
809 |
-
label=i18n("Pth file"),
|
810 |
-
info=i18n("Select the pth file to be exported"),
|
811 |
-
choices=get_pth_list(),
|
812 |
-
value=None,
|
813 |
-
interactive=True,
|
814 |
-
allow_custom_value=True,
|
815 |
-
)
|
816 |
-
with gr.Column():
|
817 |
-
index_file_export = gr.File(
|
818 |
-
label=i18n("Exported Index File"),
|
819 |
-
type="filepath",
|
820 |
-
value=None,
|
821 |
-
interactive=False,
|
822 |
-
)
|
823 |
-
index_dropdown_export = gr.Dropdown(
|
824 |
-
label=i18n("Index File"),
|
825 |
-
info=i18n("Select the index file to be exported"),
|
826 |
-
choices=get_index_list(),
|
827 |
-
value=None,
|
828 |
-
interactive=True,
|
829 |
-
allow_custom_value=True,
|
830 |
-
)
|
831 |
-
with gr.Row():
|
832 |
-
with gr.Column():
|
833 |
-
refresh_export = gr.Button(i18n("Refresh"))
|
834 |
-
if not os.name == "nt":
|
835 |
-
upload_exported = gr.Button(i18n("Upload"))
|
836 |
-
upload_exported.click(
|
837 |
-
fn=upload_to_google_drive,
|
838 |
-
inputs=[pth_dropdown_export, index_dropdown_export],
|
839 |
-
outputs=[],
|
840 |
-
)
|
841 |
-
|
842 |
-
def toggle_visible(checkbox):
|
843 |
-
return {"visible": checkbox, "__type__": "update"}
|
844 |
-
|
845 |
-
def toggle_visible_hop_length(f0_method):
|
846 |
-
if f0_method == "crepe" or f0_method == "crepe-tiny":
|
847 |
-
return {"visible": True, "__type__": "update"}
|
848 |
-
return {"visible": False, "__type__": "update"}
|
849 |
-
|
850 |
-
def toggle_pretrained(pretrained, custom_pretrained):
|
851 |
-
if custom_pretrained == False:
|
852 |
-
return {"visible": pretrained, "__type__": "update"}, {
|
853 |
-
"visible": False,
|
854 |
-
"__type__": "update",
|
855 |
-
}
|
856 |
-
else:
|
857 |
-
return {"visible": pretrained, "__type__": "update"}, {
|
858 |
-
"visible": pretrained,
|
859 |
-
"__type__": "update",
|
860 |
-
}
|
861 |
-
|
862 |
-
def enable_stop_train_button():
|
863 |
-
return {"visible": False, "__type__": "update"}, {
|
864 |
-
"visible": True,
|
865 |
-
"__type__": "update",
|
866 |
-
}
|
867 |
-
|
868 |
-
def disable_stop_train_button():
|
869 |
-
return {"visible": True, "__type__": "update"}, {
|
870 |
-
"visible": False,
|
871 |
-
"__type__": "update",
|
872 |
-
}
|
873 |
-
|
874 |
-
def download_prerequisites():
|
875 |
-
gr.Info(
|
876 |
-
"Checking for prerequisites with pitch guidance... Missing files will be downloaded. If you already have them, this step will be skipped."
|
877 |
-
)
|
878 |
-
run_prerequisites_script(
|
879 |
-
pretraineds_hifigan=True,
|
880 |
-
models=False,
|
881 |
-
exe=False,
|
882 |
-
)
|
883 |
-
gr.Info(
|
884 |
-
"Prerequisites check complete. Missing files were downloaded, and you may now start preprocessing."
|
885 |
-
)
|
886 |
-
|
887 |
-
def toggle_visible_embedder_custom(embedder_model):
|
888 |
-
if embedder_model == "custom":
|
889 |
-
return {"visible": True, "__type__": "update"}
|
890 |
-
return {"visible": False, "__type__": "update"}
|
891 |
-
|
892 |
-
def toggle_architecture(architecture):
|
893 |
-
if architecture == "Applio":
|
894 |
-
return {
|
895 |
-
"choices": ["32000", "40000", "44100", "48000"],
|
896 |
-
"__type__": "update",
|
897 |
-
}, {
|
898 |
-
"interactive": True,
|
899 |
-
"__type__": "update",
|
900 |
-
}
|
901 |
-
else:
|
902 |
-
return {
|
903 |
-
"choices": ["32000", "40000", "48000"],
|
904 |
-
"__type__": "update",
|
905 |
-
"value": "40000",
|
906 |
-
}, {"interactive": False, "__type__": "update", "value": "HiFi-GAN"}
|
907 |
-
|
908 |
-
def update_slider_visibility(noise_reduction):
|
909 |
-
return gr.update(visible=noise_reduction)
|
910 |
-
|
911 |
-
noise_reduction.change(
|
912 |
-
fn=update_slider_visibility,
|
913 |
-
inputs=noise_reduction,
|
914 |
-
outputs=clean_strength,
|
915 |
-
)
|
916 |
-
architecture.change(
|
917 |
-
fn=toggle_architecture,
|
918 |
-
inputs=[architecture],
|
919 |
-
outputs=[sampling_rate, vocoder],
|
920 |
-
)
|
921 |
-
refresh.click(
|
922 |
-
fn=refresh_models_and_datasets,
|
923 |
-
inputs=[],
|
924 |
-
outputs=[model_name, dataset_path],
|
925 |
-
)
|
926 |
-
dataset_creator.change(
|
927 |
-
fn=toggle_visible,
|
928 |
-
inputs=[dataset_creator],
|
929 |
-
outputs=[dataset_creator_settings],
|
930 |
-
)
|
931 |
-
upload_audio_dataset.upload(
|
932 |
-
fn=save_drop_dataset_audio,
|
933 |
-
inputs=[upload_audio_dataset, dataset_name],
|
934 |
-
outputs=[upload_audio_dataset, dataset_path],
|
935 |
-
)
|
936 |
-
f0_method.change(
|
937 |
-
fn=toggle_visible_hop_length,
|
938 |
-
inputs=[f0_method],
|
939 |
-
outputs=[hop_length],
|
940 |
-
)
|
941 |
-
embedder_model.change(
|
942 |
-
fn=toggle_visible_embedder_custom,
|
943 |
-
inputs=[embedder_model],
|
944 |
-
outputs=[embedder_custom],
|
945 |
-
)
|
946 |
-
embedder_model.change(
|
947 |
-
fn=toggle_visible_embedder_custom,
|
948 |
-
inputs=[embedder_model],
|
949 |
-
outputs=[embedder_custom],
|
950 |
-
)
|
951 |
-
move_files_button.click(
|
952 |
-
fn=create_folder_and_move_files,
|
953 |
-
inputs=[folder_name_input, bin_file_upload, config_file_upload],
|
954 |
-
outputs=[],
|
955 |
-
)
|
956 |
-
refresh_embedders_button.click(
|
957 |
-
fn=refresh_embedders_folders, inputs=[], outputs=[embedder_model_custom]
|
958 |
-
)
|
959 |
-
pretrained.change(
|
960 |
-
fn=toggle_pretrained,
|
961 |
-
inputs=[pretrained, custom_pretrained],
|
962 |
-
outputs=[custom_pretrained, pretrained_custom_settings],
|
963 |
-
)
|
964 |
-
custom_pretrained.change(
|
965 |
-
fn=toggle_visible,
|
966 |
-
inputs=[custom_pretrained],
|
967 |
-
outputs=[pretrained_custom_settings],
|
968 |
-
)
|
969 |
-
refresh_custom_pretaineds_button.click(
|
970 |
-
fn=refresh_custom_pretraineds,
|
971 |
-
inputs=[],
|
972 |
-
outputs=[g_pretrained_path, d_pretrained_path],
|
973 |
-
)
|
974 |
-
upload_pretrained.upload(
|
975 |
-
fn=save_drop_model,
|
976 |
-
inputs=[upload_pretrained],
|
977 |
-
outputs=[upload_pretrained],
|
978 |
-
)
|
979 |
-
overtraining_detector.change(
|
980 |
-
fn=toggle_visible,
|
981 |
-
inputs=[overtraining_detector],
|
982 |
-
outputs=[overtraining_settings],
|
983 |
-
)
|
984 |
-
train_button.click(
|
985 |
-
fn=enable_stop_train_button,
|
986 |
-
inputs=[],
|
987 |
-
outputs=[train_button, stop_train_button],
|
988 |
-
)
|
989 |
-
train_output_info.change(
|
990 |
-
fn=disable_stop_train_button,
|
991 |
-
inputs=[],
|
992 |
-
outputs=[train_button, stop_train_button],
|
993 |
-
)
|
994 |
-
pth_dropdown_export.change(
|
995 |
-
fn=export_pth,
|
996 |
-
inputs=[pth_dropdown_export],
|
997 |
-
outputs=[pth_file_export],
|
998 |
-
)
|
999 |
-
index_dropdown_export.change(
|
1000 |
-
fn=export_index,
|
1001 |
-
inputs=[index_dropdown_export],
|
1002 |
-
outputs=[index_file_export],
|
1003 |
-
)
|
1004 |
-
refresh_export.click(
|
1005 |
-
fn=refresh_pth_and_index_list,
|
1006 |
-
inputs=[],
|
1007 |
-
outputs=[pth_dropdown_export, index_dropdown_export],
|
1008 |
-
)
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import sys
|
4 |
+
from multiprocessing import cpu_count
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from assets.i18n.i18n import I18nAuto
|
9 |
+
from core import (
|
10 |
+
run_extract_script,
|
11 |
+
run_index_script,
|
12 |
+
run_preprocess_script,
|
13 |
+
run_prerequisites_script,
|
14 |
+
run_train_script,
|
15 |
+
)
|
16 |
+
from rvc.configs.config import get_gpu_info, get_number_of_gpus, max_vram_gpu
|
17 |
+
from rvc.lib.utils import format_title
|
18 |
+
from tabs.settings.sections.restart import stop_train
|
19 |
+
|
20 |
+
i18n = I18nAuto()
|
21 |
+
now_dir = os.getcwd()
|
22 |
+
sys.path.append(now_dir)
|
23 |
+
|
24 |
+
|
25 |
+
sup_audioext = {
|
26 |
+
"wav",
|
27 |
+
"mp3",
|
28 |
+
"flac",
|
29 |
+
"ogg",
|
30 |
+
"opus",
|
31 |
+
"m4a",
|
32 |
+
"mp4",
|
33 |
+
"aac",
|
34 |
+
"alac",
|
35 |
+
"wma",
|
36 |
+
"aiff",
|
37 |
+
"webm",
|
38 |
+
"ac3",
|
39 |
+
}
|
40 |
+
|
41 |
+
# Custom Pretraineds
|
42 |
+
pretraineds_custom_path = os.path.join(
|
43 |
+
now_dir, "rvc", "models", "pretraineds", "pretraineds_custom"
|
44 |
+
)
|
45 |
+
|
46 |
+
pretraineds_custom_path_relative = os.path.relpath(pretraineds_custom_path, now_dir)
|
47 |
+
|
48 |
+
custom_embedder_root = os.path.join(
|
49 |
+
now_dir, "rvc", "models", "embedders", "embedders_custom"
|
50 |
+
)
|
51 |
+
custom_embedder_root_relative = os.path.relpath(custom_embedder_root, now_dir)
|
52 |
+
|
53 |
+
os.makedirs(custom_embedder_root, exist_ok=True)
|
54 |
+
os.makedirs(pretraineds_custom_path_relative, exist_ok=True)
|
55 |
+
|
56 |
+
|
57 |
+
def get_pretrained_list(suffix):
|
58 |
+
return [
|
59 |
+
os.path.join(dirpath, filename)
|
60 |
+
for dirpath, _, filenames in os.walk(pretraineds_custom_path_relative)
|
61 |
+
for filename in filenames
|
62 |
+
if filename.endswith(".pth") and suffix in filename
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
pretraineds_list_d = get_pretrained_list("D")
|
67 |
+
pretraineds_list_g = get_pretrained_list("G")
|
68 |
+
|
69 |
+
|
70 |
+
def refresh_custom_pretraineds():
|
71 |
+
return (
|
72 |
+
{"choices": sorted(get_pretrained_list("G")), "__type__": "update"},
|
73 |
+
{"choices": sorted(get_pretrained_list("D")), "__type__": "update"},
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
# Dataset Creator
|
78 |
+
datasets_path = os.path.join(now_dir, "assets", "datasets")
|
79 |
+
|
80 |
+
if not os.path.exists(datasets_path):
|
81 |
+
os.makedirs(datasets_path)
|
82 |
+
|
83 |
+
datasets_path_relative = os.path.relpath(datasets_path, now_dir)
|
84 |
+
|
85 |
+
|
86 |
+
def get_datasets_list():
|
87 |
+
return [
|
88 |
+
dirpath
|
89 |
+
for dirpath, _, filenames in os.walk(datasets_path_relative)
|
90 |
+
if any(filename.endswith(tuple(sup_audioext)) for filename in filenames)
|
91 |
+
]
|
92 |
+
|
93 |
+
|
94 |
+
def refresh_datasets():
|
95 |
+
return {"choices": sorted(get_datasets_list()), "__type__": "update"}
|
96 |
+
|
97 |
+
|
98 |
+
# Model Names
|
99 |
+
models_path = os.path.join(now_dir, "logs")
|
100 |
+
|
101 |
+
|
102 |
+
def get_models_list():
|
103 |
+
return [
|
104 |
+
os.path.basename(dirpath)
|
105 |
+
for dirpath in os.listdir(models_path)
|
106 |
+
if os.path.isdir(os.path.join(models_path, dirpath))
|
107 |
+
and all(excluded not in dirpath for excluded in ["zips", "mute", "reference"])
|
108 |
+
]
|
109 |
+
|
110 |
+
|
111 |
+
def refresh_models():
|
112 |
+
return {"choices": sorted(get_models_list()), "__type__": "update"}
|
113 |
+
|
114 |
+
|
115 |
+
# Refresh Models and Datasets
|
116 |
+
def refresh_models_and_datasets():
|
117 |
+
return (
|
118 |
+
{"choices": sorted(get_models_list()), "__type__": "update"},
|
119 |
+
{"choices": sorted(get_datasets_list()), "__type__": "update"},
|
120 |
+
)
|
121 |
+
|
122 |
+
|
123 |
+
# Refresh Custom Embedders
|
124 |
+
def get_embedder_custom_list():
|
125 |
+
return [
|
126 |
+
os.path.join(dirpath, dirname)
|
127 |
+
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
128 |
+
for dirname in dirnames
|
129 |
+
]
|
130 |
+
|
131 |
+
|
132 |
+
def refresh_custom_embedder_list():
|
133 |
+
return {"choices": sorted(get_embedder_custom_list()), "__type__": "update"}
|
134 |
+
|
135 |
+
|
136 |
+
# Drop Model
|
137 |
+
def save_drop_model(dropbox):
|
138 |
+
if ".pth" not in dropbox:
|
139 |
+
gr.Info(
|
140 |
+
i18n(
|
141 |
+
"The file you dropped is not a valid pretrained file. Please try again."
|
142 |
+
)
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
file_name = os.path.basename(dropbox)
|
146 |
+
pretrained_path = os.path.join(pretraineds_custom_path_relative, file_name)
|
147 |
+
if os.path.exists(pretrained_path):
|
148 |
+
os.remove(pretrained_path)
|
149 |
+
shutil.copy(dropbox, pretrained_path)
|
150 |
+
gr.Info(
|
151 |
+
i18n(
|
152 |
+
"Click the refresh button to see the pretrained file in the dropdown menu."
|
153 |
+
)
|
154 |
+
)
|
155 |
+
return None
|
156 |
+
|
157 |
+
|
158 |
+
# Drop Dataset
|
159 |
+
def save_drop_dataset_audio(dropbox, dataset_name):
|
160 |
+
if not dataset_name:
|
161 |
+
gr.Info("Please enter a valid dataset name. Please try again.")
|
162 |
+
return None, None
|
163 |
+
else:
|
164 |
+
file_extension = os.path.splitext(dropbox)[1][1:].lower()
|
165 |
+
if file_extension not in sup_audioext:
|
166 |
+
gr.Info("The file you dropped is not a valid audio file. Please try again.")
|
167 |
+
else:
|
168 |
+
dataset_name = format_title(dataset_name)
|
169 |
+
audio_file = format_title(os.path.basename(dropbox))
|
170 |
+
dataset_path = os.path.join(now_dir, "assets", "datasets", dataset_name)
|
171 |
+
if not os.path.exists(dataset_path):
|
172 |
+
os.makedirs(dataset_path)
|
173 |
+
destination_path = os.path.join(dataset_path, audio_file)
|
174 |
+
if os.path.exists(destination_path):
|
175 |
+
os.remove(destination_path)
|
176 |
+
shutil.copy(dropbox, destination_path)
|
177 |
+
gr.Info(
|
178 |
+
i18n(
|
179 |
+
"The audio file has been successfully added to the dataset. Please click the preprocess button."
|
180 |
+
)
|
181 |
+
)
|
182 |
+
dataset_path = os.path.dirname(destination_path)
|
183 |
+
relative_dataset_path = os.path.relpath(dataset_path, now_dir)
|
184 |
+
|
185 |
+
return None, relative_dataset_path
|
186 |
+
|
187 |
+
|
188 |
+
# Drop Custom Embedder
|
189 |
+
def create_folder_and_move_files(folder_name, bin_file, config_file):
|
190 |
+
if not folder_name:
|
191 |
+
return "Folder name must not be empty."
|
192 |
+
|
193 |
+
folder_name = os.path.join(custom_embedder_root, folder_name)
|
194 |
+
os.makedirs(folder_name, exist_ok=True)
|
195 |
+
|
196 |
+
if bin_file:
|
197 |
+
bin_file_path = os.path.join(folder_name, os.path.basename(bin_file))
|
198 |
+
shutil.copy(bin_file, bin_file_path)
|
199 |
+
|
200 |
+
if config_file:
|
201 |
+
config_file_path = os.path.join(folder_name, os.path.basename(config_file))
|
202 |
+
shutil.copy(config_file, config_file_path)
|
203 |
+
|
204 |
+
return f"Files moved to folder {folder_name}"
|
205 |
+
|
206 |
+
|
207 |
+
def refresh_embedders_folders():
|
208 |
+
custom_embedders = [
|
209 |
+
os.path.join(dirpath, dirname)
|
210 |
+
for dirpath, dirnames, _ in os.walk(custom_embedder_root_relative)
|
211 |
+
for dirname in dirnames
|
212 |
+
]
|
213 |
+
return custom_embedders
|
214 |
+
|
215 |
+
|
216 |
+
# Export
|
217 |
+
## Get Pth and Index Files
|
218 |
+
def get_pth_list():
|
219 |
+
return [
|
220 |
+
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
221 |
+
for dirpath, _, filenames in os.walk(models_path)
|
222 |
+
for filename in filenames
|
223 |
+
if filename.endswith(".pth")
|
224 |
+
]
|
225 |
+
|
226 |
+
|
227 |
+
def get_index_list():
|
228 |
+
return [
|
229 |
+
os.path.relpath(os.path.join(dirpath, filename), now_dir)
|
230 |
+
for dirpath, _, filenames in os.walk(models_path)
|
231 |
+
for filename in filenames
|
232 |
+
if filename.endswith(".index") and "trained" not in filename
|
233 |
+
]
|
234 |
+
|
235 |
+
|
236 |
+
def refresh_pth_and_index_list():
|
237 |
+
return (
|
238 |
+
{"choices": sorted(get_pth_list()), "__type__": "update"},
|
239 |
+
{"choices": sorted(get_index_list()), "__type__": "update"},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
## Export Pth and Index Files
|
244 |
+
def export_pth(pth_path):
|
245 |
+
if pth_path and os.path.exists(pth_path):
|
246 |
+
return pth_path
|
247 |
+
return None
|
248 |
+
|
249 |
+
|
250 |
+
def export_index(index_path):
|
251 |
+
if index_path and os.path.exists(index_path):
|
252 |
+
return index_path
|
253 |
+
return None
|
254 |
+
|
255 |
+
|
256 |
+
## Upload to Google Drive
|
257 |
+
def upload_to_google_drive(pth_path, index_path):
|
258 |
+
def upload_file(file_path):
|
259 |
+
if file_path:
|
260 |
+
try:
|
261 |
+
gr.Info(f"Uploading {pth_path} to Google Drive...")
|
262 |
+
google_drive_folder = "/content/drive/MyDrive/ApplioExported"
|
263 |
+
if not os.path.exists(google_drive_folder):
|
264 |
+
os.makedirs(google_drive_folder)
|
265 |
+
google_drive_file_path = os.path.join(
|
266 |
+
google_drive_folder, os.path.basename(file_path)
|
267 |
+
)
|
268 |
+
if os.path.exists(google_drive_file_path):
|
269 |
+
os.remove(google_drive_file_path)
|
270 |
+
shutil.copy2(file_path, google_drive_file_path)
|
271 |
+
gr.Info("File uploaded successfully.")
|
272 |
+
except Exception as error:
|
273 |
+
print(f"An error occurred uploading to Google Drive: {error}")
|
274 |
+
gr.Info("Error uploading to Google Drive")
|
275 |
+
|
276 |
+
upload_file(pth_path)
|
277 |
+
upload_file(index_path)
|
278 |
+
|
279 |
+
|
280 |
+
# Train Tab
|
281 |
+
def train_tab():
|
282 |
+
# Model settings section
|
283 |
+
with gr.Accordion(i18n("Model Settings")):
|
284 |
+
with gr.Row():
|
285 |
+
with gr.Column():
|
286 |
+
model_name = gr.Dropdown(
|
287 |
+
label=i18n("Model Name"),
|
288 |
+
info=i18n("Name of the new model."),
|
289 |
+
choices=get_models_list(),
|
290 |
+
value="my-project",
|
291 |
+
interactive=True,
|
292 |
+
allow_custom_value=True,
|
293 |
+
)
|
294 |
+
architecture = gr.Radio(
|
295 |
+
label=i18n("Architecture"),
|
296 |
+
info=i18n(
|
297 |
+
"Choose the model architecture:\n- **RVC (V2)**: Default option, compatible with all clients.\n- **Applio**: Advanced quality with improved vocoders and higher sample rates, Applio-only."
|
298 |
+
),
|
299 |
+
choices=["RVC", "Applio"],
|
300 |
+
value="RVC",
|
301 |
+
interactive=True,
|
302 |
+
visible=True,
|
303 |
+
)
|
304 |
+
with gr.Column():
|
305 |
+
sampling_rate = gr.Radio(
|
306 |
+
label=i18n("Sampling Rate"),
|
307 |
+
info=i18n("The sampling rate of the audio files."),
|
308 |
+
choices=["32000", "40000", "48000"],
|
309 |
+
value="40000",
|
310 |
+
interactive=True,
|
311 |
+
)
|
312 |
+
vocoder = gr.Radio(
|
313 |
+
label=i18n("Vocoder"),
|
314 |
+
info=i18n(
|
315 |
+
"Choose the vocoder for audio synthesis:\n- **HiFi-GAN**: Default option, compatible with all clients.\n- **MRF HiFi-GAN**: Higher fidelity, Applio-only.\n- **RefineGAN**: Superior audio quality, Applio-only."
|
316 |
+
),
|
317 |
+
choices=["HiFi-GAN", "MRF HiFi-GAN", "RefineGAN"],
|
318 |
+
value="HiFi-GAN",
|
319 |
+
interactive=False,
|
320 |
+
visible=True,
|
321 |
+
)
|
322 |
+
with gr.Accordion(
|
323 |
+
i18n("Advanced Settings"),
|
324 |
+
open=False,
|
325 |
+
):
|
326 |
+
with gr.Row():
|
327 |
+
with gr.Column():
|
328 |
+
cpu_cores = gr.Slider(
|
329 |
+
1,
|
330 |
+
min(cpu_count(), 32), # max 32 parallel processes
|
331 |
+
min(cpu_count(), 32),
|
332 |
+
step=1,
|
333 |
+
label=i18n("CPU Cores"),
|
334 |
+
info=i18n(
|
335 |
+
"The number of CPU cores to use in the extraction process. The default setting are your cpu cores, which is recommended for most cases."
|
336 |
+
),
|
337 |
+
interactive=True,
|
338 |
+
)
|
339 |
+
|
340 |
+
with gr.Column():
|
341 |
+
gpu = gr.Textbox(
|
342 |
+
label=i18n("GPU Number"),
|
343 |
+
info=i18n(
|
344 |
+
"Specify the number of GPUs you wish to utilize for extracting by entering them separated by hyphens (-)."
|
345 |
+
),
|
346 |
+
placeholder=i18n("0 to ∞ separated by -"),
|
347 |
+
value=str(get_number_of_gpus()),
|
348 |
+
interactive=True,
|
349 |
+
)
|
350 |
+
gr.Textbox(
|
351 |
+
label=i18n("GPU Information"),
|
352 |
+
info=i18n("The GPU information will be displayed here."),
|
353 |
+
value=get_gpu_info(),
|
354 |
+
interactive=False,
|
355 |
+
)
|
356 |
+
# Preprocess section
|
357 |
+
with gr.Accordion(i18n("Preprocess")):
|
358 |
+
dataset_path = gr.Dropdown(
|
359 |
+
label=i18n("Dataset Path"),
|
360 |
+
info=i18n("Path to the dataset folder."),
|
361 |
+
# placeholder=i18n("Enter dataset path"),
|
362 |
+
choices=get_datasets_list(),
|
363 |
+
allow_custom_value=True,
|
364 |
+
interactive=True,
|
365 |
+
)
|
366 |
+
dataset_creator = gr.Checkbox(
|
367 |
+
label=i18n("Dataset Creator"),
|
368 |
+
value=False,
|
369 |
+
interactive=True,
|
370 |
+
visible=True,
|
371 |
+
)
|
372 |
+
with gr.Column(visible=False) as dataset_creator_settings:
|
373 |
+
with gr.Accordion(i18n("Dataset Creator")):
|
374 |
+
dataset_name = gr.Textbox(
|
375 |
+
label=i18n("Dataset Name"),
|
376 |
+
info=i18n("Name of the new dataset."),
|
377 |
+
placeholder=i18n("Enter dataset name"),
|
378 |
+
interactive=True,
|
379 |
+
)
|
380 |
+
upload_audio_dataset = gr.File(
|
381 |
+
label=i18n("Upload Audio Dataset"),
|
382 |
+
type="filepath",
|
383 |
+
interactive=True,
|
384 |
+
)
|
385 |
+
refresh = gr.Button(i18n("Refresh"))
|
386 |
+
|
387 |
+
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
388 |
+
cut_preprocess = gr.Radio(
|
389 |
+
label=i18n("Audio cutting"),
|
390 |
+
info=i18n(
|
391 |
+
"Audio file slicing method: Select 'Skip' if the files are already pre-sliced, 'Simple' if excessive silence has already been removed from the files, or 'Automatic' for automatic silence detection and slicing around it."
|
392 |
+
),
|
393 |
+
choices=["Skip", "Simple", "Automatic"],
|
394 |
+
value="Automatic",
|
395 |
+
interactive=True,
|
396 |
+
)
|
397 |
+
with gr.Row():
|
398 |
+
chunk_len = gr.Slider(
|
399 |
+
0.5,
|
400 |
+
5.0,
|
401 |
+
3.0,
|
402 |
+
step=0.1,
|
403 |
+
label=i18n("Chunk length (sec)"),
|
404 |
+
info=i18n("Length of the audio slice for 'Simple' method."),
|
405 |
+
interactive=True,
|
406 |
+
)
|
407 |
+
overlap_len = gr.Slider(
|
408 |
+
0.0,
|
409 |
+
0.4,
|
410 |
+
0.3,
|
411 |
+
step=0.1,
|
412 |
+
label=i18n("Overlap length (sec)"),
|
413 |
+
info=i18n(
|
414 |
+
"Length of the overlap between slices for 'Simple' method."
|
415 |
+
),
|
416 |
+
interactive=True,
|
417 |
+
)
|
418 |
+
|
419 |
+
with gr.Row():
|
420 |
+
process_effects = gr.Checkbox(
|
421 |
+
label=i18n("Process effects"),
|
422 |
+
info=i18n(
|
423 |
+
"It's recommended to deactivate this option if your dataset has already been processed."
|
424 |
+
),
|
425 |
+
value=True,
|
426 |
+
interactive=True,
|
427 |
+
visible=True,
|
428 |
+
)
|
429 |
+
noise_reduction = gr.Checkbox(
|
430 |
+
label=i18n("Noise Reduction"),
|
431 |
+
info=i18n(
|
432 |
+
"It's recommended keep deactivate this option if your dataset has already been processed."
|
433 |
+
),
|
434 |
+
value=False,
|
435 |
+
interactive=True,
|
436 |
+
visible=True,
|
437 |
+
)
|
438 |
+
clean_strength = gr.Slider(
|
439 |
+
minimum=0,
|
440 |
+
maximum=1,
|
441 |
+
label=i18n("Noise Reduction Strength"),
|
442 |
+
info=i18n(
|
443 |
+
"Set the clean-up level to the audio you want, the more you increase it the more it will clean up, but it is possible that the audio will be more compressed."
|
444 |
+
),
|
445 |
+
visible=False,
|
446 |
+
value=0.5,
|
447 |
+
interactive=True,
|
448 |
+
)
|
449 |
+
preprocess_output_info = gr.Textbox(
|
450 |
+
label=i18n("Output Information"),
|
451 |
+
info=i18n("The output information will be displayed here."),
|
452 |
+
value="",
|
453 |
+
max_lines=8,
|
454 |
+
interactive=False,
|
455 |
+
)
|
456 |
+
|
457 |
+
with gr.Row():
|
458 |
+
preprocess_button = gr.Button(i18n("Preprocess Dataset"))
|
459 |
+
preprocess_button.click(
|
460 |
+
fn=run_preprocess_script,
|
461 |
+
inputs=[
|
462 |
+
model_name,
|
463 |
+
dataset_path,
|
464 |
+
sampling_rate,
|
465 |
+
cpu_cores,
|
466 |
+
cut_preprocess,
|
467 |
+
process_effects,
|
468 |
+
noise_reduction,
|
469 |
+
clean_strength,
|
470 |
+
chunk_len,
|
471 |
+
overlap_len,
|
472 |
+
],
|
473 |
+
outputs=[preprocess_output_info],
|
474 |
+
)
|
475 |
+
|
476 |
+
# Extract section
|
477 |
+
with gr.Accordion(i18n("Extract")):
|
478 |
+
with gr.Row():
|
479 |
+
f0_method = gr.Radio(
|
480 |
+
label=i18n("Pitch extraction algorithm"),
|
481 |
+
info=i18n(
|
482 |
+
"Pitch extraction algorithm to use for the audio conversion. The default algorithm is rmvpe, which is recommended for most cases."
|
483 |
+
),
|
484 |
+
choices=["crepe", "crepe-tiny", "rmvpe"],
|
485 |
+
value="rmvpe",
|
486 |
+
interactive=True,
|
487 |
+
)
|
488 |
+
|
489 |
+
embedder_model = gr.Radio(
|
490 |
+
label=i18n("Embedder Model"),
|
491 |
+
info=i18n("Model used for learning speaker embedding."),
|
492 |
+
choices=[
|
493 |
+
"contentvec",
|
494 |
+
"chinese-hubert-base",
|
495 |
+
"japanese-hubert-base",
|
496 |
+
"korean-hubert-base",
|
497 |
+
"custom",
|
498 |
+
],
|
499 |
+
value="contentvec",
|
500 |
+
interactive=True,
|
501 |
+
)
|
502 |
+
include_mutes = gr.Slider(
|
503 |
+
0,
|
504 |
+
10,
|
505 |
+
2,
|
506 |
+
step=1,
|
507 |
+
label=i18n("Silent training files"),
|
508 |
+
info=i18n(
|
509 |
+
"Adding several silent files to the training set enables the model to handle pure silence in inferred audio files. Select 0 if your dataset is clean and already contains segments of pure silence."
|
510 |
+
),
|
511 |
+
value=True,
|
512 |
+
interactive=True,
|
513 |
+
)
|
514 |
+
hop_length = gr.Slider(
|
515 |
+
1,
|
516 |
+
512,
|
517 |
+
128,
|
518 |
+
step=1,
|
519 |
+
label=i18n("Hop Length"),
|
520 |
+
info=i18n(
|
521 |
+
"Denotes the duration it takes for the system to transition to a significant pitch change. Smaller hop lengths require more time for inference but tend to yield higher pitch accuracy."
|
522 |
+
),
|
523 |
+
visible=False,
|
524 |
+
interactive=True,
|
525 |
+
)
|
526 |
+
with gr.Row(visible=False) as embedder_custom:
|
527 |
+
with gr.Accordion("Custom Embedder", open=True):
|
528 |
+
with gr.Row():
|
529 |
+
embedder_model_custom = gr.Dropdown(
|
530 |
+
label="Select Custom Embedder",
|
531 |
+
choices=refresh_embedders_folders(),
|
532 |
+
interactive=True,
|
533 |
+
allow_custom_value=True,
|
534 |
+
)
|
535 |
+
refresh_embedders_button = gr.Button("Refresh embedders")
|
536 |
+
folder_name_input = gr.Textbox(label="Folder Name", interactive=True)
|
537 |
+
with gr.Row():
|
538 |
+
bin_file_upload = gr.File(
|
539 |
+
label="Upload .bin", type="filepath", interactive=True
|
540 |
+
)
|
541 |
+
config_file_upload = gr.File(
|
542 |
+
label="Upload .json", type="filepath", interactive=True
|
543 |
+
)
|
544 |
+
move_files_button = gr.Button("Move files to custom embedder folder")
|
545 |
+
|
546 |
+
extract_output_info = gr.Textbox(
|
547 |
+
label=i18n("Output Information"),
|
548 |
+
info=i18n("The output information will be displayed here."),
|
549 |
+
value="",
|
550 |
+
max_lines=8,
|
551 |
+
interactive=False,
|
552 |
+
)
|
553 |
+
extract_button = gr.Button(i18n("Extract Features"))
|
554 |
+
extract_button.click(
|
555 |
+
fn=run_extract_script,
|
556 |
+
inputs=[
|
557 |
+
model_name,
|
558 |
+
f0_method,
|
559 |
+
hop_length,
|
560 |
+
cpu_cores,
|
561 |
+
gpu,
|
562 |
+
sampling_rate,
|
563 |
+
embedder_model,
|
564 |
+
embedder_model_custom,
|
565 |
+
include_mutes,
|
566 |
+
],
|
567 |
+
outputs=[extract_output_info],
|
568 |
+
)
|
569 |
+
|
570 |
+
# Training section
|
571 |
+
with gr.Accordion(i18n("Training")):
|
572 |
+
with gr.Row():
|
573 |
+
batch_size = gr.Slider(
|
574 |
+
1,
|
575 |
+
50,
|
576 |
+
max_vram_gpu(0),
|
577 |
+
step=1,
|
578 |
+
label=i18n("Batch Size"),
|
579 |
+
info=i18n(
|
580 |
+
"It's advisable to align it with the available VRAM of your GPU. A setting of 4 offers improved accuracy but slower processing, while 8 provides faster and standard results."
|
581 |
+
),
|
582 |
+
interactive=True,
|
583 |
+
)
|
584 |
+
save_every_epoch = gr.Slider(
|
585 |
+
1,
|
586 |
+
100,
|
587 |
+
10,
|
588 |
+
step=1,
|
589 |
+
label=i18n("Save Every Epoch"),
|
590 |
+
info=i18n("Determine at how many epochs the model will saved at."),
|
591 |
+
interactive=True,
|
592 |
+
)
|
593 |
+
total_epoch = gr.Slider(
|
594 |
+
1,
|
595 |
+
10000,
|
596 |
+
500,
|
597 |
+
step=1,
|
598 |
+
label=i18n("Total Epoch"),
|
599 |
+
info=i18n(
|
600 |
+
"Specifies the overall quantity of epochs for the model training process."
|
601 |
+
),
|
602 |
+
interactive=True,
|
603 |
+
)
|
604 |
+
with gr.Accordion(i18n("Advanced Settings"), open=False):
|
605 |
+
with gr.Row():
|
606 |
+
with gr.Column():
|
607 |
+
save_only_latest = gr.Checkbox(
|
608 |
+
label=i18n("Save Only Latest"),
|
609 |
+
info=i18n(
|
610 |
+
"Enabling this setting will result in the G and D files saving only their most recent versions, effectively conserving storage space."
|
611 |
+
),
|
612 |
+
value=True,
|
613 |
+
interactive=True,
|
614 |
+
)
|
615 |
+
save_every_weights = gr.Checkbox(
|
616 |
+
label=i18n("Save Every Weights"),
|
617 |
+
info=i18n(
|
618 |
+
"This setting enables you to save the weights of the model at the conclusion of each epoch."
|
619 |
+
),
|
620 |
+
value=True,
|
621 |
+
interactive=True,
|
622 |
+
)
|
623 |
+
pretrained = gr.Checkbox(
|
624 |
+
label=i18n("Pretrained"),
|
625 |
+
info=i18n(
|
626 |
+
"Utilize pretrained models when training your own. This approach reduces training duration and enhances overall quality."
|
627 |
+
),
|
628 |
+
value=True,
|
629 |
+
interactive=True,
|
630 |
+
)
|
631 |
+
with gr.Column():
|
632 |
+
cleanup = gr.Checkbox(
|
633 |
+
label=i18n("Fresh Training"),
|
634 |
+
info=i18n(
|
635 |
+
"Enable this setting only if you are training a new model from scratch or restarting the training. Deletes all previously generated weights and tensorboard logs."
|
636 |
+
),
|
637 |
+
value=False,
|
638 |
+
interactive=True,
|
639 |
+
)
|
640 |
+
cache_dataset_in_gpu = gr.Checkbox(
|
641 |
+
label=i18n("Cache Dataset in GPU"),
|
642 |
+
info=i18n(
|
643 |
+
"Cache the dataset in GPU memory to speed up the training process."
|
644 |
+
),
|
645 |
+
value=False,
|
646 |
+
interactive=True,
|
647 |
+
)
|
648 |
+
checkpointing = gr.Checkbox(
|
649 |
+
label=i18n("Checkpointing"),
|
650 |
+
info=i18n(
|
651 |
+
"Enables memory-efficient training. This reduces VRAM usage at the cost of slower training speed. It is useful for GPUs with limited memory (e.g., <6GB VRAM) or when training with a batch size larger than what your GPU can normally accommodate."
|
652 |
+
),
|
653 |
+
value=False,
|
654 |
+
interactive=True,
|
655 |
+
)
|
656 |
+
with gr.Row():
|
657 |
+
custom_pretrained = gr.Checkbox(
|
658 |
+
label=i18n("Custom Pretrained"),
|
659 |
+
info=i18n(
|
660 |
+
"Utilizing custom pretrained models can lead to superior results, as selecting the most suitable pretrained models tailored to the specific use case can significantly enhance performance."
|
661 |
+
),
|
662 |
+
value=False,
|
663 |
+
interactive=True,
|
664 |
+
)
|
665 |
+
overtraining_detector = gr.Checkbox(
|
666 |
+
label=i18n("Overtraining Detector"),
|
667 |
+
info=i18n(
|
668 |
+
"Detect overtraining to prevent the model from learning the training data too well and losing the ability to generalize to new data."
|
669 |
+
),
|
670 |
+
value=False,
|
671 |
+
interactive=True,
|
672 |
+
)
|
673 |
+
with gr.Row():
|
674 |
+
with gr.Column(visible=False) as pretrained_custom_settings:
|
675 |
+
with gr.Accordion(i18n("Pretrained Custom Settings")):
|
676 |
+
upload_pretrained = gr.File(
|
677 |
+
label=i18n("Upload Pretrained Model"),
|
678 |
+
type="filepath",
|
679 |
+
interactive=True,
|
680 |
+
)
|
681 |
+
refresh_custom_pretaineds_button = gr.Button(
|
682 |
+
i18n("Refresh Custom Pretraineds")
|
683 |
+
)
|
684 |
+
g_pretrained_path = gr.Dropdown(
|
685 |
+
label=i18n("Custom Pretrained G"),
|
686 |
+
info=i18n(
|
687 |
+
"Select the custom pretrained model for the generator."
|
688 |
+
),
|
689 |
+
choices=sorted(pretraineds_list_g),
|
690 |
+
interactive=True,
|
691 |
+
allow_custom_value=True,
|
692 |
+
)
|
693 |
+
d_pretrained_path = gr.Dropdown(
|
694 |
+
label=i18n("Custom Pretrained D"),
|
695 |
+
info=i18n(
|
696 |
+
"Select the custom pretrained model for the discriminator."
|
697 |
+
),
|
698 |
+
choices=sorted(pretraineds_list_d),
|
699 |
+
interactive=True,
|
700 |
+
allow_custom_value=True,
|
701 |
+
)
|
702 |
+
|
703 |
+
with gr.Column(visible=False) as overtraining_settings:
|
704 |
+
with gr.Accordion(i18n("Overtraining Detector Settings")):
|
705 |
+
overtraining_threshold = gr.Slider(
|
706 |
+
1,
|
707 |
+
100,
|
708 |
+
50,
|
709 |
+
step=1,
|
710 |
+
label=i18n("Overtraining Threshold"),
|
711 |
+
info=i18n(
|
712 |
+
"Set the maximum number of epochs you want your model to stop training if no improvement is detected."
|
713 |
+
),
|
714 |
+
interactive=True,
|
715 |
+
)
|
716 |
+
index_algorithm = gr.Radio(
|
717 |
+
label=i18n("Index Algorithm"),
|
718 |
+
info=i18n(
|
719 |
+
"KMeans is a clustering algorithm that divides the dataset into K clusters. This setting is particularly useful for large datasets."
|
720 |
+
),
|
721 |
+
choices=["Auto", "Faiss", "KMeans"],
|
722 |
+
value="Auto",
|
723 |
+
interactive=True,
|
724 |
+
)
|
725 |
+
|
726 |
+
def enforce_terms(terms_accepted, *args):
|
727 |
+
if not terms_accepted:
|
728 |
+
message = "You must agree to the Terms of Use to proceed."
|
729 |
+
gr.Info(message)
|
730 |
+
return message
|
731 |
+
return run_train_script(*args)
|
732 |
+
|
733 |
+
terms_checkbox = gr.Checkbox(
|
734 |
+
label=i18n("I agree to the terms of use"),
|
735 |
+
info=i18n(
|
736 |
+
"Please ensure compliance with the terms and conditions detailed in [this document](https://github.com/IAHispano/Applio/blob/main/TERMS_OF_USE.md) before proceeding with your training."
|
737 |
+
),
|
738 |
+
value=True,
|
739 |
+
interactive=True,
|
740 |
+
)
|
741 |
+
train_output_info = gr.Textbox(
|
742 |
+
label=i18n("Output Information"),
|
743 |
+
info=i18n("The output information will be displayed here."),
|
744 |
+
value="",
|
745 |
+
max_lines=8,
|
746 |
+
interactive=False,
|
747 |
+
)
|
748 |
+
|
749 |
+
with gr.Row():
|
750 |
+
train_button = gr.Button(i18n("Start Training"))
|
751 |
+
train_button.click(
|
752 |
+
fn=enforce_terms,
|
753 |
+
inputs=[
|
754 |
+
terms_checkbox,
|
755 |
+
model_name,
|
756 |
+
save_every_epoch,
|
757 |
+
save_only_latest,
|
758 |
+
save_every_weights,
|
759 |
+
total_epoch,
|
760 |
+
sampling_rate,
|
761 |
+
batch_size,
|
762 |
+
gpu,
|
763 |
+
overtraining_detector,
|
764 |
+
overtraining_threshold,
|
765 |
+
pretrained,
|
766 |
+
cleanup,
|
767 |
+
index_algorithm,
|
768 |
+
cache_dataset_in_gpu,
|
769 |
+
custom_pretrained,
|
770 |
+
g_pretrained_path,
|
771 |
+
d_pretrained_path,
|
772 |
+
vocoder,
|
773 |
+
checkpointing,
|
774 |
+
],
|
775 |
+
outputs=[train_output_info],
|
776 |
+
)
|
777 |
+
|
778 |
+
stop_train_button = gr.Button(i18n("Stop Training"), visible=False)
|
779 |
+
stop_train_button.click(
|
780 |
+
fn=stop_train,
|
781 |
+
inputs=[model_name],
|
782 |
+
outputs=[],
|
783 |
+
)
|
784 |
+
|
785 |
+
index_button = gr.Button(i18n("Generate Index"))
|
786 |
+
index_button.click(
|
787 |
+
fn=run_index_script,
|
788 |
+
inputs=[model_name, index_algorithm],
|
789 |
+
outputs=[train_output_info],
|
790 |
+
)
|
791 |
+
|
792 |
+
# Export Model section
|
793 |
+
with gr.Accordion(i18n("Export Model"), open=False):
|
794 |
+
if not os.name == "nt":
|
795 |
+
gr.Markdown(
|
796 |
+
i18n(
|
797 |
+
"The button 'Upload' is only for google colab: Uploads the exported files to the ApplioExported folder in your Google Drive."
|
798 |
+
)
|
799 |
+
)
|
800 |
+
with gr.Row():
|
801 |
+
with gr.Column():
|
802 |
+
pth_file_export = gr.File(
|
803 |
+
label=i18n("Exported Pth file"),
|
804 |
+
type="filepath",
|
805 |
+
value=None,
|
806 |
+
interactive=False,
|
807 |
+
)
|
808 |
+
pth_dropdown_export = gr.Dropdown(
|
809 |
+
label=i18n("Pth file"),
|
810 |
+
info=i18n("Select the pth file to be exported"),
|
811 |
+
choices=get_pth_list(),
|
812 |
+
value=None,
|
813 |
+
interactive=True,
|
814 |
+
allow_custom_value=True,
|
815 |
+
)
|
816 |
+
with gr.Column():
|
817 |
+
index_file_export = gr.File(
|
818 |
+
label=i18n("Exported Index File"),
|
819 |
+
type="filepath",
|
820 |
+
value=None,
|
821 |
+
interactive=False,
|
822 |
+
)
|
823 |
+
index_dropdown_export = gr.Dropdown(
|
824 |
+
label=i18n("Index File"),
|
825 |
+
info=i18n("Select the index file to be exported"),
|
826 |
+
choices=get_index_list(),
|
827 |
+
value=None,
|
828 |
+
interactive=True,
|
829 |
+
allow_custom_value=True,
|
830 |
+
)
|
831 |
+
with gr.Row():
|
832 |
+
with gr.Column():
|
833 |
+
refresh_export = gr.Button(i18n("Refresh"))
|
834 |
+
if not os.name == "nt":
|
835 |
+
upload_exported = gr.Button(i18n("Upload"))
|
836 |
+
upload_exported.click(
|
837 |
+
fn=upload_to_google_drive,
|
838 |
+
inputs=[pth_dropdown_export, index_dropdown_export],
|
839 |
+
outputs=[],
|
840 |
+
)
|
841 |
+
|
842 |
+
def toggle_visible(checkbox):
|
843 |
+
return {"visible": checkbox, "__type__": "update"}
|
844 |
+
|
845 |
+
def toggle_visible_hop_length(f0_method):
|
846 |
+
if f0_method == "crepe" or f0_method == "crepe-tiny":
|
847 |
+
return {"visible": True, "__type__": "update"}
|
848 |
+
return {"visible": False, "__type__": "update"}
|
849 |
+
|
850 |
+
def toggle_pretrained(pretrained, custom_pretrained):
|
851 |
+
if custom_pretrained == False:
|
852 |
+
return {"visible": pretrained, "__type__": "update"}, {
|
853 |
+
"visible": False,
|
854 |
+
"__type__": "update",
|
855 |
+
}
|
856 |
+
else:
|
857 |
+
return {"visible": pretrained, "__type__": "update"}, {
|
858 |
+
"visible": pretrained,
|
859 |
+
"__type__": "update",
|
860 |
+
}
|
861 |
+
|
862 |
+
def enable_stop_train_button():
|
863 |
+
return {"visible": False, "__type__": "update"}, {
|
864 |
+
"visible": True,
|
865 |
+
"__type__": "update",
|
866 |
+
}
|
867 |
+
|
868 |
+
def disable_stop_train_button():
|
869 |
+
return {"visible": True, "__type__": "update"}, {
|
870 |
+
"visible": False,
|
871 |
+
"__type__": "update",
|
872 |
+
}
|
873 |
+
|
874 |
+
def download_prerequisites():
|
875 |
+
gr.Info(
|
876 |
+
"Checking for prerequisites with pitch guidance... Missing files will be downloaded. If you already have them, this step will be skipped."
|
877 |
+
)
|
878 |
+
run_prerequisites_script(
|
879 |
+
pretraineds_hifigan=True,
|
880 |
+
models=False,
|
881 |
+
exe=False,
|
882 |
+
)
|
883 |
+
gr.Info(
|
884 |
+
"Prerequisites check complete. Missing files were downloaded, and you may now start preprocessing."
|
885 |
+
)
|
886 |
+
|
887 |
+
def toggle_visible_embedder_custom(embedder_model):
|
888 |
+
if embedder_model == "custom":
|
889 |
+
return {"visible": True, "__type__": "update"}
|
890 |
+
return {"visible": False, "__type__": "update"}
|
891 |
+
|
892 |
+
def toggle_architecture(architecture):
|
893 |
+
if architecture == "Applio":
|
894 |
+
return {
|
895 |
+
"choices": ["32000", "40000", "44100", "48000"],
|
896 |
+
"__type__": "update",
|
897 |
+
}, {
|
898 |
+
"interactive": True,
|
899 |
+
"__type__": "update",
|
900 |
+
}
|
901 |
+
else:
|
902 |
+
return {
|
903 |
+
"choices": ["32000", "40000", "48000"],
|
904 |
+
"__type__": "update",
|
905 |
+
"value": "40000",
|
906 |
+
}, {"interactive": False, "__type__": "update", "value": "HiFi-GAN"}
|
907 |
+
|
908 |
+
def update_slider_visibility(noise_reduction):
|
909 |
+
return gr.update(visible=noise_reduction)
|
910 |
+
|
911 |
+
noise_reduction.change(
|
912 |
+
fn=update_slider_visibility,
|
913 |
+
inputs=noise_reduction,
|
914 |
+
outputs=clean_strength,
|
915 |
+
)
|
916 |
+
architecture.change(
|
917 |
+
fn=toggle_architecture,
|
918 |
+
inputs=[architecture],
|
919 |
+
outputs=[sampling_rate, vocoder],
|
920 |
+
)
|
921 |
+
refresh.click(
|
922 |
+
fn=refresh_models_and_datasets,
|
923 |
+
inputs=[],
|
924 |
+
outputs=[model_name, dataset_path],
|
925 |
+
)
|
926 |
+
dataset_creator.change(
|
927 |
+
fn=toggle_visible,
|
928 |
+
inputs=[dataset_creator],
|
929 |
+
outputs=[dataset_creator_settings],
|
930 |
+
)
|
931 |
+
upload_audio_dataset.upload(
|
932 |
+
fn=save_drop_dataset_audio,
|
933 |
+
inputs=[upload_audio_dataset, dataset_name],
|
934 |
+
outputs=[upload_audio_dataset, dataset_path],
|
935 |
+
)
|
936 |
+
f0_method.change(
|
937 |
+
fn=toggle_visible_hop_length,
|
938 |
+
inputs=[f0_method],
|
939 |
+
outputs=[hop_length],
|
940 |
+
)
|
941 |
+
embedder_model.change(
|
942 |
+
fn=toggle_visible_embedder_custom,
|
943 |
+
inputs=[embedder_model],
|
944 |
+
outputs=[embedder_custom],
|
945 |
+
)
|
946 |
+
embedder_model.change(
|
947 |
+
fn=toggle_visible_embedder_custom,
|
948 |
+
inputs=[embedder_model],
|
949 |
+
outputs=[embedder_custom],
|
950 |
+
)
|
951 |
+
move_files_button.click(
|
952 |
+
fn=create_folder_and_move_files,
|
953 |
+
inputs=[folder_name_input, bin_file_upload, config_file_upload],
|
954 |
+
outputs=[],
|
955 |
+
)
|
956 |
+
refresh_embedders_button.click(
|
957 |
+
fn=refresh_embedders_folders, inputs=[], outputs=[embedder_model_custom]
|
958 |
+
)
|
959 |
+
pretrained.change(
|
960 |
+
fn=toggle_pretrained,
|
961 |
+
inputs=[pretrained, custom_pretrained],
|
962 |
+
outputs=[custom_pretrained, pretrained_custom_settings],
|
963 |
+
)
|
964 |
+
custom_pretrained.change(
|
965 |
+
fn=toggle_visible,
|
966 |
+
inputs=[custom_pretrained],
|
967 |
+
outputs=[pretrained_custom_settings],
|
968 |
+
)
|
969 |
+
refresh_custom_pretaineds_button.click(
|
970 |
+
fn=refresh_custom_pretraineds,
|
971 |
+
inputs=[],
|
972 |
+
outputs=[g_pretrained_path, d_pretrained_path],
|
973 |
+
)
|
974 |
+
upload_pretrained.upload(
|
975 |
+
fn=save_drop_model,
|
976 |
+
inputs=[upload_pretrained],
|
977 |
+
outputs=[upload_pretrained],
|
978 |
+
)
|
979 |
+
overtraining_detector.change(
|
980 |
+
fn=toggle_visible,
|
981 |
+
inputs=[overtraining_detector],
|
982 |
+
outputs=[overtraining_settings],
|
983 |
+
)
|
984 |
+
train_button.click(
|
985 |
+
fn=enable_stop_train_button,
|
986 |
+
inputs=[],
|
987 |
+
outputs=[train_button, stop_train_button],
|
988 |
+
)
|
989 |
+
train_output_info.change(
|
990 |
+
fn=disable_stop_train_button,
|
991 |
+
inputs=[],
|
992 |
+
outputs=[train_button, stop_train_button],
|
993 |
+
)
|
994 |
+
pth_dropdown_export.change(
|
995 |
+
fn=export_pth,
|
996 |
+
inputs=[pth_dropdown_export],
|
997 |
+
outputs=[pth_file_export],
|
998 |
+
)
|
999 |
+
index_dropdown_export.change(
|
1000 |
+
fn=export_index,
|
1001 |
+
inputs=[index_dropdown_export],
|
1002 |
+
outputs=[index_file_export],
|
1003 |
+
)
|
1004 |
+
refresh_export.click(
|
1005 |
+
fn=refresh_pth_and_index_list,
|
1006 |
+
inputs=[],
|
1007 |
+
outputs=[pth_dropdown_export, index_dropdown_export],
|
1008 |
+
)
|