soiz1's picture
Upload 204 files
2f5f13b verified
import os
import sys
import glob
import time
import tqdm
import torch
import torchcrepe
import numpy as np
import concurrent.futures
import multiprocessing as mp
import json
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
# Zluda hijack
import rvc.lib.zluda
from rvc.lib.utils import load_audio, load_embedding
from rvc.train.extract.preparing_files import generate_config, generate_filelist
from rvc.lib.predictors.RMVPE import RMVPE0Predictor
from rvc.configs.config import Config
# Load config
config = Config()
mp.set_start_method("spawn", force=True)
class FeatureInput:
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"):
self.fs = sample_rate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.device = device
self.model_rmvpe = None
def compute_f0(self, audio_array, method, hop_length):
if method == "crepe":
return self._get_crepe(audio_array, hop_length, type="full")
elif method == "crepe-tiny":
return self._get_crepe(audio_array, hop_length, type="tiny")
elif method == "rmvpe":
return self.model_rmvpe.infer_from_audio(audio_array, thred=0.03)
def _get_crepe(self, x, hop_length, type):
audio = torch.from_numpy(x.astype(np.float32)).to(self.device)
audio /= torch.quantile(torch.abs(audio), 0.999)
audio = audio.unsqueeze(0)
pitch = torchcrepe.predict(
audio,
self.fs,
hop_length,
self.f0_min,
self.f0_max,
type,
batch_size=hop_length * 2,
device=audio.device,
pad=True,
)
source = pitch.squeeze(0).cpu().float().numpy()
source[source < 0.001] = np.nan
return np.nan_to_num(
np.interp(
np.arange(0, len(source) * (x.size // self.hop), len(source))
/ (x.size // self.hop),
np.arange(0, len(source)),
source,
)
)
def coarse_f0(self, f0):
f0_mel = 1127.0 * np.log(1.0 + f0 / 700.0)
f0_mel = np.clip(
(f0_mel - self.f0_mel_min)
* (self.f0_bin - 2)
/ (self.f0_mel_max - self.f0_mel_min)
+ 1,
1,
self.f0_bin - 1,
)
return np.rint(f0_mel).astype(int)
def process_file(self, file_info, f0_method, hop_length):
inp_path, opt_path_coarse, opt_path_full, _ = file_info
if os.path.exists(opt_path_coarse) and os.path.exists(opt_path_full):
return
try:
np_arr = load_audio(inp_path, self.fs)
feature_pit = self.compute_f0(np_arr, f0_method, hop_length)
np.save(opt_path_full, feature_pit, allow_pickle=False)
coarse_pit = self.coarse_f0(feature_pit)
np.save(opt_path_coarse, coarse_pit, allow_pickle=False)
except Exception as error:
print(
f"An error occurred extracting file {inp_path} on {self.device}: {error}"
)
def process_files(self, files, f0_method, hop_length, device, threads):
self.device = device
if f0_method == "rmvpe":
self.model_rmvpe = RMVPE0Predictor(
os.path.join("rvc", "models", "predictors", "rmvpe.pt"),
device=device,
)
def worker(file_info):
self.process_file(file_info, f0_method, hop_length)
with tqdm.tqdm(total=len(files), leave=True) as pbar:
with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor:
futures = [executor.submit(worker, f) for f in files]
for _ in concurrent.futures.as_completed(futures):
pbar.update(1)
def run_pitch_extraction(files, devices, f0_method, hop_length, threads):
devices_str = ", ".join(devices)
print(
f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..."
)
start_time = time.time()
fe = FeatureInput()
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor:
tasks = [
executor.submit(
fe.process_files,
files[i :: len(devices)],
f0_method,
hop_length,
devices[i],
threads // len(devices),
)
for i in range(len(devices))
]
concurrent.futures.wait(tasks)
print(f"Pitch extraction completed in {time.time() - start_time:.2f} seconds.")
def process_file_embedding(
files, embedder_model, embedder_model_custom, device_num, device, n_threads
):
model = load_embedding(embedder_model, embedder_model_custom).to(device).float()
model.eval()
n_threads = max(1, n_threads)
def worker(file_info):
wav_file_path, _, _, out_file_path = file_info
if os.path.exists(out_file_path):
return
feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(device).float()
feats = feats.view(1, -1)
with torch.no_grad():
result = model(feats)["last_hidden_state"]
feats_out = result.squeeze(0).float().cpu().numpy()
if not np.isnan(feats_out).any():
np.save(out_file_path, feats_out, allow_pickle=False)
else:
print(f"{wav_file_path} produced NaN values; skipping.")
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar:
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor:
futures = [executor.submit(worker, f) for f in files]
for _ in concurrent.futures.as_completed(futures):
pbar.update(1)
def run_embedding_extraction(
files, devices, embedder_model, embedder_model_custom, threads
):
devices_str = ", ".join(devices)
print(
f"Starting embedding extraction with {num_processes} cores on {devices_str}..."
)
start_time = time.time()
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor:
tasks = [
executor.submit(
process_file_embedding,
files[i :: len(devices)],
embedder_model,
embedder_model_custom,
i,
devices[i],
threads // len(devices),
)
for i in range(len(devices))
]
concurrent.futures.wait(tasks)
print(f"Embedding extraction completed in {time.time() - start_time:.2f} seconds.")
if __name__ == "__main__":
exp_dir = sys.argv[1]
f0_method = sys.argv[2]
hop_length = int(sys.argv[3])
num_processes = int(sys.argv[4])
gpus = sys.argv[5]
sample_rate = sys.argv[6]
embedder_model = sys.argv[7]
embedder_model_custom = sys.argv[8] if len(sys.argv) > 8 else None
include_mutes = int(sys.argv[9]) if len(sys.argv) > 9 else 2
wav_path = os.path.join(exp_dir, "sliced_audios_16k")
os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True)
os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True)
os.makedirs(os.path.join(exp_dir, "extracted"), exist_ok=True)
chosen_embedder_model = (
embedder_model_custom if embedder_model == "custom" else embedder_model
)
file_path = os.path.join(exp_dir, "model_info.json")
if os.path.exists(file_path):
with open(file_path, "r") as f:
data = json.load(f)
else:
data = {}
data["embedder_model"] = chosen_embedder_model
with open(file_path, "w") as f:
json.dump(data, f, indent=4)
files = []
for file in glob.glob(os.path.join(wav_path, "*.wav")):
file_name = os.path.basename(file)
file_info = [
file,
os.path.join(exp_dir, "f0", file_name + ".npy"),
os.path.join(exp_dir, "f0_voiced", file_name + ".npy"),
os.path.join(exp_dir, "extracted", file_name.replace("wav", "npy")),
]
files.append(file_info)
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")]
run_pitch_extraction(files, devices, f0_method, hop_length, num_processes)
run_embedding_extraction(
files, devices, embedder_model, embedder_model_custom, num_processes
)
generate_config(sample_rate, exp_dir)
generate_filelist(exp_dir, sample_rate, include_mutes)