Spaces:
Running
Running
import os | |
import sys | |
import glob | |
import time | |
import tqdm | |
import torch | |
import torchcrepe | |
import numpy as np | |
import concurrent.futures | |
import multiprocessing as mp | |
import json | |
now_dir = os.getcwd() | |
sys.path.append(os.path.join(now_dir)) | |
# Zluda hijack | |
import rvc.lib.zluda | |
from rvc.lib.utils import load_audio, load_embedding | |
from rvc.train.extract.preparing_files import generate_config, generate_filelist | |
from rvc.lib.predictors.RMVPE import RMVPE0Predictor | |
from rvc.configs.config import Config | |
# Load config | |
config = Config() | |
mp.set_start_method("spawn", force=True) | |
class FeatureInput: | |
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"): | |
self.fs = sample_rate | |
self.hop = hop_size | |
self.f0_bin = 256 | |
self.f0_max = 1100.0 | |
self.f0_min = 50.0 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
self.device = device | |
self.model_rmvpe = None | |
def compute_f0(self, audio_array, method, hop_length): | |
if method == "crepe": | |
return self._get_crepe(audio_array, hop_length, type="full") | |
elif method == "crepe-tiny": | |
return self._get_crepe(audio_array, hop_length, type="tiny") | |
elif method == "rmvpe": | |
return self.model_rmvpe.infer_from_audio(audio_array, thred=0.03) | |
def _get_crepe(self, x, hop_length, type): | |
audio = torch.from_numpy(x.astype(np.float32)).to(self.device) | |
audio /= torch.quantile(torch.abs(audio), 0.999) | |
audio = audio.unsqueeze(0) | |
pitch = torchcrepe.predict( | |
audio, | |
self.fs, | |
hop_length, | |
self.f0_min, | |
self.f0_max, | |
type, | |
batch_size=hop_length * 2, | |
device=audio.device, | |
pad=True, | |
) | |
source = pitch.squeeze(0).cpu().float().numpy() | |
source[source < 0.001] = np.nan | |
return np.nan_to_num( | |
np.interp( | |
np.arange(0, len(source) * (x.size // self.hop), len(source)) | |
/ (x.size // self.hop), | |
np.arange(0, len(source)), | |
source, | |
) | |
) | |
def coarse_f0(self, f0): | |
f0_mel = 1127.0 * np.log(1.0 + f0 / 700.0) | |
f0_mel = np.clip( | |
(f0_mel - self.f0_mel_min) | |
* (self.f0_bin - 2) | |
/ (self.f0_mel_max - self.f0_mel_min) | |
+ 1, | |
1, | |
self.f0_bin - 1, | |
) | |
return np.rint(f0_mel).astype(int) | |
def process_file(self, file_info, f0_method, hop_length): | |
inp_path, opt_path_coarse, opt_path_full, _ = file_info | |
if os.path.exists(opt_path_coarse) and os.path.exists(opt_path_full): | |
return | |
try: | |
np_arr = load_audio(inp_path, self.fs) | |
feature_pit = self.compute_f0(np_arr, f0_method, hop_length) | |
np.save(opt_path_full, feature_pit, allow_pickle=False) | |
coarse_pit = self.coarse_f0(feature_pit) | |
np.save(opt_path_coarse, coarse_pit, allow_pickle=False) | |
except Exception as error: | |
print( | |
f"An error occurred extracting file {inp_path} on {self.device}: {error}" | |
) | |
def process_files(self, files, f0_method, hop_length, device, threads): | |
self.device = device | |
if f0_method == "rmvpe": | |
self.model_rmvpe = RMVPE0Predictor( | |
os.path.join("rvc", "models", "predictors", "rmvpe.pt"), | |
device=device, | |
) | |
def worker(file_info): | |
self.process_file(file_info, f0_method, hop_length) | |
with tqdm.tqdm(total=len(files), leave=True) as pbar: | |
with concurrent.futures.ThreadPoolExecutor(max_workers=threads) as executor: | |
futures = [executor.submit(worker, f) for f in files] | |
for _ in concurrent.futures.as_completed(futures): | |
pbar.update(1) | |
def run_pitch_extraction(files, devices, f0_method, hop_length, threads): | |
devices_str = ", ".join(devices) | |
print( | |
f"Starting pitch extraction with {num_processes} cores on {devices_str} using {f0_method}..." | |
) | |
start_time = time.time() | |
fe = FeatureInput() | |
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor: | |
tasks = [ | |
executor.submit( | |
fe.process_files, | |
files[i :: len(devices)], | |
f0_method, | |
hop_length, | |
devices[i], | |
threads // len(devices), | |
) | |
for i in range(len(devices)) | |
] | |
concurrent.futures.wait(tasks) | |
print(f"Pitch extraction completed in {time.time() - start_time:.2f} seconds.") | |
def process_file_embedding( | |
files, embedder_model, embedder_model_custom, device_num, device, n_threads | |
): | |
model = load_embedding(embedder_model, embedder_model_custom).to(device).float() | |
model.eval() | |
n_threads = max(1, n_threads) | |
def worker(file_info): | |
wav_file_path, _, _, out_file_path = file_info | |
if os.path.exists(out_file_path): | |
return | |
feats = torch.from_numpy(load_audio(wav_file_path, 16000)).to(device).float() | |
feats = feats.view(1, -1) | |
with torch.no_grad(): | |
result = model(feats)["last_hidden_state"] | |
feats_out = result.squeeze(0).float().cpu().numpy() | |
if not np.isnan(feats_out).any(): | |
np.save(out_file_path, feats_out, allow_pickle=False) | |
else: | |
print(f"{wav_file_path} produced NaN values; skipping.") | |
with tqdm.tqdm(total=len(files), leave=True, position=device_num) as pbar: | |
with concurrent.futures.ThreadPoolExecutor(max_workers=n_threads) as executor: | |
futures = [executor.submit(worker, f) for f in files] | |
for _ in concurrent.futures.as_completed(futures): | |
pbar.update(1) | |
def run_embedding_extraction( | |
files, devices, embedder_model, embedder_model_custom, threads | |
): | |
devices_str = ", ".join(devices) | |
print( | |
f"Starting embedding extraction with {num_processes} cores on {devices_str}..." | |
) | |
start_time = time.time() | |
with concurrent.futures.ProcessPoolExecutor(max_workers=len(devices)) as executor: | |
tasks = [ | |
executor.submit( | |
process_file_embedding, | |
files[i :: len(devices)], | |
embedder_model, | |
embedder_model_custom, | |
i, | |
devices[i], | |
threads // len(devices), | |
) | |
for i in range(len(devices)) | |
] | |
concurrent.futures.wait(tasks) | |
print(f"Embedding extraction completed in {time.time() - start_time:.2f} seconds.") | |
if __name__ == "__main__": | |
exp_dir = sys.argv[1] | |
f0_method = sys.argv[2] | |
hop_length = int(sys.argv[3]) | |
num_processes = int(sys.argv[4]) | |
gpus = sys.argv[5] | |
sample_rate = sys.argv[6] | |
embedder_model = sys.argv[7] | |
embedder_model_custom = sys.argv[8] if len(sys.argv) > 8 else None | |
include_mutes = int(sys.argv[9]) if len(sys.argv) > 9 else 2 | |
wav_path = os.path.join(exp_dir, "sliced_audios_16k") | |
os.makedirs(os.path.join(exp_dir, "f0"), exist_ok=True) | |
os.makedirs(os.path.join(exp_dir, "f0_voiced"), exist_ok=True) | |
os.makedirs(os.path.join(exp_dir, "extracted"), exist_ok=True) | |
chosen_embedder_model = ( | |
embedder_model_custom if embedder_model == "custom" else embedder_model | |
) | |
file_path = os.path.join(exp_dir, "model_info.json") | |
if os.path.exists(file_path): | |
with open(file_path, "r") as f: | |
data = json.load(f) | |
else: | |
data = {} | |
data["embedder_model"] = chosen_embedder_model | |
with open(file_path, "w") as f: | |
json.dump(data, f, indent=4) | |
files = [] | |
for file in glob.glob(os.path.join(wav_path, "*.wav")): | |
file_name = os.path.basename(file) | |
file_info = [ | |
file, | |
os.path.join(exp_dir, "f0", file_name + ".npy"), | |
os.path.join(exp_dir, "f0_voiced", file_name + ".npy"), | |
os.path.join(exp_dir, "extracted", file_name.replace("wav", "npy")), | |
] | |
files.append(file_info) | |
devices = ["cpu"] if gpus == "-" else [f"cuda:{idx}" for idx in gpus.split("-")] | |
run_pitch_extraction(files, devices, f0_method, hop_length, num_processes) | |
run_embedding_extraction( | |
files, devices, embedder_model, embedder_model_custom, num_processes | |
) | |
generate_config(sample_rate, exp_dir) | |
generate_filelist(exp_dir, sample_rate, include_mutes) | |