soiz1's picture
Upload 204 files
2f5f13b verified
import math
import torch
from typing import Optional
from rvc.lib.algorithm.commons import sequence_mask
from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.normalization import LayerNorm
from rvc.lib.algorithm.attentions import FFN, MultiHeadAttention
class Encoder(torch.nn.Module):
"""
Encoder module for the Transformer model.
Args:
hidden_channels (int): Number of hidden channels in the encoder.
filter_channels (int): Number of filter channels in the feed-forward network.
n_heads (int): Number of attention heads.
n_layers (int): Number of encoder layers.
kernel_size (int, optional): Kernel size of the convolution layers in the feed-forward network. Defaults to 1.
p_dropout (float, optional): Dropout probability. Defaults to 0.0.
window_size (int, optional): Window size for relative positional encoding. Defaults to 10.
"""
def __init__(
self,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int = 1,
p_dropout: float = 0.0,
window_size: int = 10,
):
super().__init__()
self.hidden_channels = hidden_channels
self.n_layers = n_layers
self.drop = torch.nn.Dropout(p_dropout)
self.attn_layers = torch.nn.ModuleList(
[
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
for _ in range(n_layers)
]
)
self.norm_layers_1 = torch.nn.ModuleList(
[LayerNorm(hidden_channels) for _ in range(n_layers)]
)
self.ffn_layers = torch.nn.ModuleList(
[
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
for _ in range(n_layers)
]
)
self.norm_layers_2 = torch.nn.ModuleList(
[LayerNorm(hidden_channels) for _ in range(n_layers)]
)
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
return x * x_mask
class TextEncoder(torch.nn.Module):
"""
Text Encoder with configurable embedding dimension.
Args:
out_channels (int): Output channels of the encoder.
hidden_channels (int): Hidden channels of the encoder.
filter_channels (int): Filter channels of the encoder.
n_heads (int): Number of attention heads.
n_layers (int): Number of encoder layers.
kernel_size (int): Kernel size of the convolutional layers.
p_dropout (float): Dropout probability.
embedding_dim (int): Embedding dimension for phone embeddings (v1 = 256, v2 = 768).
f0 (bool, optional): Whether to use F0 embedding. Defaults to True.
"""
def __init__(
self,
out_channels: int,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int,
p_dropout: float,
embedding_dim: int,
f0: bool = True,
):
super().__init__()
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.emb_phone = torch.nn.Linear(embedding_dim, hidden_channels)
self.lrelu = torch.nn.LeakyReLU(0.1, inplace=True)
self.emb_pitch = torch.nn.Embedding(256, hidden_channels) if f0 else None
self.encoder = Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(
self, phone: torch.Tensor, pitch: Optional[torch.Tensor], lengths: torch.Tensor
):
x = self.emb_phone(phone)
if pitch is not None and self.emb_pitch:
x += self.emb_pitch(pitch)
x *= math.sqrt(self.hidden_channels)
x = self.lrelu(x)
x = x.transpose(1, -1) # [B, H, T]
x_mask = sequence_mask(lengths, x.size(2)).unsqueeze(1).to(x.dtype)
x = self.encoder(x, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask
class PosteriorEncoder(torch.nn.Module):
"""
Posterior Encoder for inferring latent representation.
Args:
in_channels (int): Number of channels in the input.
out_channels (int): Number of channels in the output.
hidden_channels (int): Number of hidden channels in the encoder.
kernel_size (int): Kernel size of the convolutional layers.
dilation_rate (int): Dilation rate of the convolutional layers.
n_layers (int): Number of layers in the encoder.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
gin_channels: int = 0,
):
super().__init__()
self.out_channels = out_channels
self.pre = torch.nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WaveNet(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = torch.nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(
self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
):
x_mask = sequence_mask(x_lengths, x.size(2)).unsqueeze(1).to(x.dtype)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = m + torch.randn_like(m) * torch.exp(logs)
z *= x_mask
return z, m, logs, x_mask
def remove_weight_norm(self):
self.enc.remove_weight_norm()
def __prepare_scriptable__(self):
for hook in self.enc._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.enc)
return self