File size: 4,461 Bytes
2f5f13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch


def feature_loss(fmap_r, fmap_g):
    """

    Compute the feature loss between reference and generated feature maps.



    Args:

        fmap_r (list of torch.Tensor): List of reference feature maps.

        fmap_g (list of torch.Tensor): List of generated feature maps.

    """
    return 2 * sum(
        torch.mean(torch.abs(rl - gl))
        for dr, dg in zip(fmap_r, fmap_g)
        for rl, gl in zip(dr, dg)
    )


def discriminator_loss(disc_real_outputs, disc_generated_outputs):
    """

    Compute the discriminator loss for real and generated outputs.



    Args:

        disc_real_outputs (list of torch.Tensor): List of discriminator outputs for real samples.

        disc_generated_outputs (list of torch.Tensor): List of discriminator outputs for generated samples.

    """
    loss = 0
    r_losses = []
    g_losses = []
    for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
        r_loss = torch.mean((1 - dr.float()) ** 2)
        g_loss = torch.mean(dg.float() ** 2)

        # r_losses.append(r_loss.item())
        # g_losses.append(g_loss.item())
        loss += r_loss + g_loss

    return loss, r_losses, g_losses


def generator_loss(disc_outputs):
    """

    Compute the generator loss based on discriminator outputs.



    Args:

        disc_outputs (list of torch.Tensor): List of discriminator outputs for generated samples.

    """
    loss = 0
    gen_losses = []
    for dg in disc_outputs:
        l = torch.mean((1 - dg.float()) ** 2)
        # gen_losses.append(l.item())
        loss += l

    return loss, gen_losses


def discriminator_loss_scaled(disc_real, disc_fake, scale=1.0):
    loss = 0
    for i, (d_real, d_fake) in enumerate(zip(disc_real, disc_fake)):
        real_loss = torch.mean((1 - d_real) ** 2)
        fake_loss = torch.mean(d_fake**2)
        _loss = real_loss + fake_loss
        loss += _loss if i < len(disc_real) / 2 else scale * _loss
    return loss, None, None


def generator_loss_scaled(disc_outputs, scale=1.0):
    loss = 0
    for i, d_fake in enumerate(disc_outputs):
        d_fake = d_fake.float()
        _loss = torch.mean((1 - d_fake) ** 2)
        loss += _loss if i < len(disc_outputs) / 2 else scale * _loss
    return loss, None, None


def discriminator_loss_scaled(disc_real, disc_fake, scale=1.0):
    """

    Compute the scaled discriminator loss for real and generated outputs.



    Args:

        disc_real (list of torch.Tensor): List of discriminator outputs for real samples.

        disc_fake (list of torch.Tensor): List of discriminator outputs for generated samples.

        scale (float, optional): Scaling factor applied to losses beyond the midpoint. Default is 1.0.

    """
    midpoint = len(disc_real) // 2
    losses = []
    for i, (d_real, d_fake) in enumerate(zip(disc_real, disc_fake)):
        real_loss = (1 - d_real).pow(2).mean()
        fake_loss = d_fake.pow(2).mean()
        total_loss = real_loss + fake_loss
        if i >= midpoint:
            total_loss *= scale
        losses.append(total_loss)
    loss = sum(losses)
    return loss, None, None


def generator_loss_scaled(disc_outputs, scale=1.0):
    """

    Compute the scaled generator loss based on discriminator outputs.



    Args:

        disc_outputs (list of torch.Tensor): List of discriminator outputs for generated samples.

        scale (float, optional): Scaling factor applied to losses beyond the midpoint. Default is 1.0.

    """
    midpoint = len(disc_outputs) // 2
    losses = []
    for i, d_fake in enumerate(disc_outputs):
        loss_value = (1 - d_fake).pow(2).mean()
        if i >= midpoint:
            loss_value *= scale
        losses.append(loss_value)
    loss = sum(losses)
    return loss, None, None


def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
    """

    Compute the Kullback-Leibler divergence loss.



    Args:

        z_p (torch.Tensor): Latent variable z_p [b, h, t_t].

        logs_q (torch.Tensor): Log variance of q [b, h, t_t].

        m_p (torch.Tensor): Mean of p [b, h, t_t].

        logs_p (torch.Tensor): Log variance of p [b, h, t_t].

        z_mask (torch.Tensor): Mask for the latent variables [b, h, t_t].

    """
    kl = logs_p - logs_q - 0.5 + 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2 * logs_p)
    kl = (kl * z_mask).sum()
    loss = kl / z_mask.sum()
    return loss