GPTfree api commited on
Commit
df4d00f
·
verified ·
1 Parent(s): 983b6c9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -3
app.py CHANGED
@@ -1,23 +1,35 @@
 
1
  from vllm import LLM
2
  from vllm.sampling_params import SamplingParams
3
- from huggingface_hub import hf_hub_download
4
  from datetime import datetime, timedelta
5
 
 
 
 
 
 
 
6
  model_name = "mistralai/Pixtral-Large-Instruct-2411"
7
 
8
  def load_system_prompt(repo_id: str, filename: str) -> str:
 
9
  file_path = hf_hub_download(repo_id=repo_id, filename=filename)
10
  with open(file_path, 'r') as file:
11
  system_prompt = file.read()
 
12
  today = datetime.today().strftime('%Y-%m-%d')
13
  yesterday = (datetime.today() - timedelta(days=1)).strftime('%Y-%m-%d')
14
  model_name = repo_id.split("/")[-1]
15
  return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
16
 
 
17
  SYSTEM_PROMPT = load_system_prompt(model_name, "SYSTEM_PROMPT.txt")
18
 
 
19
  image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png"
20
 
 
21
  messages = [
22
  {"role": "system", "content": SYSTEM_PROMPT},
23
  {
@@ -32,11 +44,21 @@ messages = [
32
  },
33
  ]
34
 
 
35
  sampling_params = SamplingParams(max_tokens=512)
36
 
37
- # note that running this model on GPU requires over 300 GB of GPU RAM
38
- llm = LLM(model=model_name, config_format="mistral", load_format="mistral", tokenizer_mode="mistral", tensor_parallel_size=8, limit_mm_per_prompt={"image": 4})
 
 
 
 
 
 
 
39
 
 
40
  outputs = llm.chat(messages, sampling_params=sampling_params)
41
 
 
42
  print(outputs[0].outputs[0].text)
 
1
+ import os
2
  from vllm import LLM
3
  from vllm.sampling_params import SamplingParams
4
+ from huggingface_hub import hf_hub_download, login
5
  from datetime import datetime, timedelta
6
 
7
+ # Hugging Face トークンでログイン
8
+ hf_token = os.getenv("HF_TOKEN")
9
+ if not hf_token:
10
+ raise ValueError("Hugging Face token is not set in environment variables.")
11
+ login(hf_token)
12
+
13
  model_name = "mistralai/Pixtral-Large-Instruct-2411"
14
 
15
  def load_system_prompt(repo_id: str, filename: str) -> str:
16
+ """指定されたリポジトリからSYSTEM_PROMPT.txtをダウンロードし、フォーマット済みプロンプトを返す"""
17
  file_path = hf_hub_download(repo_id=repo_id, filename=filename)
18
  with open(file_path, 'r') as file:
19
  system_prompt = file.read()
20
+ # 日付とモデル名でフォーマット
21
  today = datetime.today().strftime('%Y-%m-%d')
22
  yesterday = (datetime.today() - timedelta(days=1)).strftime('%Y-%m-%d')
23
  model_name = repo_id.split("/")[-1]
24
  return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
25
 
26
+ # SYSTEM_PROMPT をロード
27
  SYSTEM_PROMPT = load_system_prompt(model_name, "SYSTEM_PROMPT.txt")
28
 
29
+ # 画像URL
30
  image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png"
31
 
32
+ # メッセージリスト
33
  messages = [
34
  {"role": "system", "content": SYSTEM_PROMPT},
35
  {
 
44
  },
45
  ]
46
 
47
+ # サンプリング設定
48
  sampling_params = SamplingParams(max_tokens=512)
49
 
50
+ # LLMの初期化 (GPUを利用)
51
+ llm = LLM(
52
+ model=model_name,
53
+ config_format="mistral",
54
+ load_format="mistral",
55
+ tokenizer_mode="mistral",
56
+ tensor_parallel_size=8, # GPUを8個使用
57
+ limit_mm_per_prompt={"image": 4} # マルチモーダル入力制限
58
+ )
59
 
60
+ # メッセージを送信し、応答を取得
61
  outputs = llm.chat(messages, sampling_params=sampling_params)
62
 
63
+ # 結果を表示
64
  print(outputs[0].outputs[0].text)