|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
import onnxruntime |
|
import torch |
|
import numpy as np |
|
import whisper |
|
import torchaudio.compliance.kaldi as kaldi |
|
|
|
class CosyVoiceFrontEnd: |
|
|
|
def __init__(self, speech_tokenizer_model: str, device: str = 'cuda', device_id: int = 0): |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
option = onnxruntime.SessionOptions() |
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
option.intra_op_num_threads = 1 |
|
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider" if device == "cuda" and torch.cuda.is_available() else "CPUExecutionProvider"]) |
|
|
|
def extract_speech_token(self, speech): |
|
feat = whisper.log_mel_spectrogram(speech, n_mels=128) |
|
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(), |
|
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist() |
|
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device) |
|
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device) |
|
return speech_token, speech_token_len |
|
|
|
def _extract_spk_embedding(self, speech): |
|
feat = kaldi.fbank(speech, |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000) |
|
feat = feat - feat.mean(dim=0, keepdim=True) |
|
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() |
|
embedding = torch.tensor([embedding]).to(self.device) |
|
return embedding |
|
|
|
def _extract_speech_feat(self, speech): |
|
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device) |
|
speech_feat = speech_feat.unsqueeze(dim=0) |
|
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device) |
|
return speech_feat, speech_feat_len |