File size: 4,463 Bytes
334dcac e4bcc80 55f430c 334dcac 55f430c 334dcac 55f430c 334dcac 55f430c e4bcc80 55f430c 334dcac 55f430c 334dcac 55f430c 334dcac e4bcc80 55f430c 334dcac 55f430c 334dcac 55f430c 334dcac 55f430c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# File name: graph_client.py
from concurrent.futures import ThreadPoolExecutor
import json
import os
import numpy as np
import requests
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import torch
# hack for debugging, set HTTP_ADDRESS to "http://127.0.0.1:8000/"
# os.environ["HTTP_ADDRESS"] = "http://192.168.7.79:8000"
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
english_text = (
"It was the best of times, it was the worst of times, it was the age "
"of wisdom, it was the age of foolishness, it was the epoch of belief"
)
clip_model="ViT-L/14"
clip_model_id ="laion5B-L-14"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print ("using device", device)
from clip_retrieval.load_clip import load_clip, get_tokenizer
# from clip_retrieval.clip_client import ClipClient, Modality
model, preprocess = load_clip(clip_model, use_jit=True, device=device)
tokenizer = get_tokenizer(clip_model)
def preprocess_image(image_url):
# download image from url
import requests
from PIL import Image
from io import BytesIO
response = requests.get(test_image_url)
input_image = Image.open(BytesIO(response.content))
input_image = input_image.convert('RGB')
# convert image to numpy array
input_image = np.array(input_image)
input_im = Image.fromarray(input_image)
prepro = preprocess(input_im).unsqueeze(0).to(device)
return prepro
preprocessed_image = preprocess_image(test_image_url)
def send_text_request(number):
data = {"text": english_text}
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
response = requests.post(url, json=data)
embeddings = response.text
return number, embeddings
def send_image_url_request(number):
data = {"image_url": test_image_url}
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
response = requests.post(url, json=data)
embeddings = response.text
return number, embeddings
def send_preprocessed_image_request(number):
nested_list = preprocessed_image.tolist()
data = {"preprocessed_image": nested_list}
url = os.environ.get("HTTP_ADDRESS", "http://127.0.0.1:8000/")
response = requests.post(url, json=data)
embeddings = response.text
return number, embeddings
def process(numbers, send_func, max_workers=10):
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = [executor.submit(send_func, number) for number in numbers]
for future in as_completed(futures):
n_result, result = future.result()
result = json.loads(result)
print (f"{n_result} : {len(result[0])}")
# def process_text(numbers, max_workers=10):
# for n in numbers:
# n_result, result = send_text_request(n)
# result = json.loads(result)
# print (f"{n_result} : {len(result[0])}")
if __name__ == "__main__":
n_calls = 10000
# test text
# n_calls = 1
numbers = list(range(n_calls))
start_time = time.monotonic()
process(numbers, send_text_request)
end_time = time.monotonic()
total_time = end_time - start_time
avg_time_ms = total_time / n_calls * 1000
calls_per_sec = n_calls / total_time
print(f"Text...")
print(f" Average time taken: {avg_time_ms:.2f} ms")
print(f" Number of calls per second: {calls_per_sec:.2f}")
n_calls = 100
# test image url
# n_calls = 1
numbers = list(range(n_calls))
start_time = time.monotonic()
process(numbers, send_image_url_request)
end_time = time.monotonic()
total_time = end_time - start_time
avg_time_ms = total_time / n_calls * 1000
calls_per_sec = n_calls / total_time
print(f"Image passing url...")
print(f" Average time taken: {avg_time_ms:.2f} ms")
print(f" Number of calls per second: {calls_per_sec:.2f}")
# test image as vector
# n_calls = 1
numbers = list(range(n_calls))
start_time = time.monotonic()
process(numbers, send_preprocessed_image_request)
end_time = time.monotonic()
total_time = end_time - start_time
avg_time_ms = total_time / n_calls * 1000
calls_per_sec = n_calls / total_time
print(f"Text...")
print(f" Average time taken: {avg_time_ms:.2f} ms")
print(f" Number of calls per second: {calls_per_sec:.2f}")
|