File size: 14,405 Bytes
6a020f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import streamlit as st
from groq import Groq
from PyPDF2 import PdfReader
from docx import Document
from tiktoken import get_encoding, Encoding
import concurrent.futures
import matplotlib.pyplot as plt
import io
import base64
import os

# Groq API client initialization
client = Groq(api_key="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")  # Replace with your actual API key.

def extract_text_from_pdf(file):
    reader = PdfReader(file)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

def extract_text_from_docx(file):
    doc = Document(file)
    text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
    return text

def preprocess_text(text):
    return " ".join(text.replace("\n", " ").replace("\r", " ").split())

def get_default_encoding():
    return get_encoding("cl100k_base")

def split_into_chunks(text, token_limit=5500):
    encoding = get_default_encoding()
    words = text.split()
    chunks = []
    current_chunk = []
    current_tokens = 0

    for word in words:
        word_tokens = len(encoding.encode(word + " "))
        if current_tokens + word_tokens > token_limit:
            chunks.append(" ".join(current_chunk))
            current_chunk = [word]
            current_tokens = word_tokens
        else:
            current_chunk.append(word)
            current_tokens += word_tokens

    if current_chunk:
        chunks.append(" ".join(current_chunk))
    return chunks

def summarize_text(text):
    try:
        response = client.chat.completions.create(
            messages=[{
                "role": "user",
                "content": f"Summarize the following legal document in a concise manner: {text}"
            }],
            model="llama-3.1-8b-instant",
            stream=False
        )
        if response and response.choices:
            return response.choices[0].message.content
        else:
            return "Error: Received an empty or invalid response from Groq API."
    except Exception as e:
        return f"Error generating summary: {e}"

def summarize_large_text(text, chunk_limit=5000):
    chunks = split_into_chunks(text, token_limit=chunk_limit)
    summaries = []
    for chunk in chunks:
        summaries.append(summarize_text(chunk))
    return " ".join(summaries)

def detect_key_clauses(text):
    key_clauses = [
        {"clause": "confidentiality", "summary": "Confidentiality clauses ensure that sensitive information remains protected."},
        {"clause": "liability", "summary": "Liability clauses outline the responsibility for damages or losses incurred."},
        {"clause": "termination", "summary": "Termination clauses specify the conditions under which a contract may be ended."},
        {"clause": "force majeure", "summary": "Force majeure clauses excuse parties from performance obligations due to unforeseen events."},
        {"clause": "governing law", "summary": "Governing law clauses specify which jurisdiction's laws will govern the contract."},
        {"clause": "dispute resolution", "summary": "Dispute resolution clauses specify how conflicts between parties will be resolved."},
        {"clause": "amendment", "summary": "Amendment clauses outline the process for changing the terms of the contract."},
        {"clause": "warranty", "summary": "Warranty clauses provide assurances regarding the quality or condition of goods or services."},
    ]
    
    detected_clauses = []
    for clause in key_clauses:
        if clause["clause"].lower() in text.lower():
            clause_start = text.lower().find(clause["clause"].lower())
            context = text[clause_start - 50: clause_start + 200]
            explanation = f"The document mentions '{clause['clause']}' clause. Context: {context.strip()}..."
            detected_clauses.append({
                "clause": clause["clause"].capitalize(),
                "summary": clause["summary"],
                "explanation": explanation
            })
    
    return detected_clauses

def detect_hidden_obligations_or_dependencies(text, summary):
    hidden_obligations = [
        {"phrase": "dependent upon", "summary": "This suggests that some action is conditional upon another."},
        {"phrase": "if", "summary": "This indicates that certain conditions must be met to fulfill the obligation."},
        {"phrase": "may be required", "summary": "Implies that the party could be obligated to perform an action under specific conditions."},
        {"phrase": "should", "summary": "Implies a recommendation or requirement, though not explicitly mandatory."},
        {"phrase": "obligated to", "summary": "Indicates a clear, binding duty to perform an action."},
    ]
    
    hidden_dependencies = []
    
    for item in hidden_obligations:
        if item["phrase"].lower() in text.lower() or item["phrase"].lower() in summary.lower():
            phrase_start = text.lower().find(item["phrase"].lower())
            context = text[phrase_start - 50: phrase_start + 200]
            hidden_dependencies.append({
                "phrase": item["phrase"],
                "summary": item["summary"],
                "context": context.strip()
            })
    
    return hidden_dependencies

def detect_risks(text, summary):
    risk_phrases = [
        {"phrase": "penalty", "summary": "Penalty clauses may impose financial or legal consequences on the parties involved."},
        {"phrase": "liability", "summary": "Liability clauses may indicate potential financial responsibility or legal risks."},
        {"phrase": "default", "summary": "Default clauses can expose parties to consequences for failure to perform obligations."},
        {"phrase": "breach", "summary": "Breach of contract can lead to serious legal consequences including financial penalties."},
        {"phrase": "suspension", "summary": "Suspension clauses may indicate risks of halting services or operations in case of non-compliance."},
    ]
    
    detected_risks = []
    
    for item in risk_phrases:
        if item["phrase"].lower() in text.lower() or item["phrase"].lower() in summary.lower():
            phrase_start = text.lower().find(item["phrase"].lower())
            context = text[phrase_start - 50: phrase_start + 200]
            detected_risks.append({
                "phrase": item["phrase"],
                "summary": item["summary"],
                "context": context.strip()
            })
    
    return detected_risks

def plot_risk_pie_chart(detected_clauses, hidden_obligations, detected_risks):
    # Calculate counts for each category
    num_clauses = len(detected_clauses)
    num_obligations = len(hidden_obligations)
    num_risks = len(detected_risks)

    # Create a pie chart
    labels = ['Detected Key Clauses', 'Hidden Obligations or Dependencies', 'Detected Risks']
    sizes = [num_clauses, num_obligations, num_risks]
    colors = ['#ff9999','#66b3ff','#99ff99']

    fig, ax = plt.subplots()
    ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=colors, wedgeprops={'edgecolor': 'black'})
    ax.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.

    # Create a buffer to save the plot as an image in memory
    buf = io.BytesIO()
    plt.savefig(buf, format="png")
    buf.seek(0)
    
    # Encode the image to base64
    img_str = base64.b64encode(buf.read()).decode('utf-8')
    buf.close()
    
    return img_str

def generate_analysis_document(document_text, summary, detected_clauses, hidden_obligations, detected_risks):
    doc = Document()
    doc.add_heading('Legal Document Analysis', level=1)

    doc.add_heading('Extracted Document Text', level=2)
    doc.add_paragraph(document_text)

    doc.add_heading('Summary', level=2)
    doc.add_paragraph(summary)

    doc.add_heading('Key Clauses', level=2)
    if detected_clauses:
        for clause in detected_clauses:
            doc.add_paragraph(f"Clause: {clause['clause']}")
            doc.add_paragraph(f"Summary: {clause['summary']}")
            doc.add_paragraph(f"Explanation: {clause['explanation']}")
    else:
        doc.add_paragraph("No key clauses detected.")

    doc.add_heading('Hidden Obligations or Dependencies', level=2)
    if hidden_obligations:
        for obligation in hidden_obligations:
            doc.add_paragraph(f"Phrase: {obligation['phrase']}")
            doc.add_paragraph(f"Summary: {obligation['summary']}")
            doc.add_paragraph(f"Context: {obligation['context']}")
    else:
        doc.add_paragraph("No hidden obligations detected.")

    doc.add_heading('Risks', level=2)
    if detected_risks:
        for risk in detected_risks:
            doc.add_paragraph(f"Risk Phrase: {risk['phrase']}")
            doc.add_paragraph(f"Summary: {risk['summary']}")
            doc.add_paragraph(f"Context: {risk['context']}")
    else:
        doc.add_paragraph("No risks detected.")

    return doc

def display_legal_analysis_page():
    st.title("Legal Document Analysis with Groq API")

    uploaded_file = st.file_uploader("Upload your legal document (PDF or DOCX)", type=["pdf", "docx"])
    if uploaded_file:
        if uploaded_file.name.endswith(".pdf"):
            document_text = preprocess_text(extract_text_from_pdf(uploaded_file))
        elif uploaded_file.name.endswith(".docx"):
            document_text = preprocess_text(extract_text_from_docx(uploaded_file))
        else:
            st.error("Unsupported file type!")
            return

        tabs = st.tabs(["Document Text", "Summary", "Key Clauses", "Hidden Obligations or Dependencies", "Risk Analysis"])


        with tabs[0]:
            st.subheader("Extracted Legal Document Text")
            st.text_area("Document Text", document_text, height=300)

        with tabs[1]:
            st.subheader("Quick Summary")
            summary = summarize_large_text(document_text)
            if "Error" in summary:
                st.warning("Summary generation failed.")
                summary = "Summary not available."
            st.write(summary)

        with tabs[2]:
            st.subheader("Detected Key Clauses")
            
            detected_clauses = detect_key_clauses(document_text)
            if not detected_clauses:
                st.write("No key clauses detected.")
            else:
                # Count occurrences of each detected clause
                clause_counts = {}
                for clause in detected_clauses:
                    clause_counts[clause['clause']] = clause_counts.get(clause['clause'], 0) + 1

                # Create a bar chart for detected clauses
                if clause_counts:
                    labels = list(clause_counts.keys())
                    values = list(clause_counts.values())

                    fig, ax = plt.subplots()
                    ax.bar(labels, values, color='skyblue')

                    # Rotate x-axis labels for better visibility
                    plt.xticks(rotation=45, ha='right')

                    # Add titles and labels
                    ax.set_title("Detected Key Clauses Visualization")
                    ax.set_xlabel("Clause")
                    ax.set_ylabel("Count")

                    # Display the plot
                    st.pyplot(fig)

                # Display details of each clause
                for clause in detected_clauses:
                    if st.button(f"Show Explanation for {clause['clause']} Clause"):
                        st.write(f"**Clause: {clause['clause']}**")
                        st.write(f"Summary: {clause['summary']}\nExplanation: {clause['explanation']}")

        with tabs[3]:
            st.subheader("Detected Hidden Obligations or Dependencies")
            hidden_obligations = detect_hidden_obligations_or_dependencies(document_text, summary)
            if not hidden_obligations:
                st.write("No hidden obligations or dependencies detected.")
            else:
                for item in hidden_obligations:
                    st.write(f"**Phrase: {item['phrase']}**")
                    st.write(f"Summary: {item['summary']}\nContext: {item['context']}")

        with tabs[4]:
            st.subheader("Risk Analysis & Visualization")
            
            detected_clauses = detect_key_clauses(document_text)
            hidden_obligations = detect_hidden_obligations_or_dependencies(document_text, summary)
            detected_risks = detect_risks(document_text, summary)

            # Generate and display the pie chart
            img_str = plot_risk_pie_chart(detected_clauses, hidden_obligations, detected_risks)
            st.image(f"data:image/png;base64,{img_str}", use_column_width=True)

            # Display the detected risks after the visualization
            st.write("### Detected Risks:")
            if detected_risks:
                for risk in detected_risks:
                    st.write(f"**{risk['phrase']}**: {risk['summary']}")

            # Optionally, show other categories (Key Clauses, Hidden Obligations) after risks
            st.write("### Detected Key Clauses:")
            for clause in detected_clauses:
                st.write(f"**{clause['clause']}**: {clause['explanation']}")

            st.write("### Hidden Obligations or Dependencies:")
            for obligation in hidden_obligations:
                st.write(f"**{obligation['phrase']}**: {obligation['summary']}")

            # Generate the full analysis document for download
            analysis_doc = generate_analysis_document(document_text, summary, detected_clauses, hidden_obligations, detected_risks)

            with st.expander("Download Analysis"):
                output_path = "analysis_report.docx"
                analysis_doc.save(output_path)

                with open(output_path, "rb") as f:
                    st.download_button("Download Analysis", data=f, file_name="analysis_report.docx", mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document")


if __name__ == "__main__":
    display_legal_analysis_page()