import traceback import numpy as np import cv2 from flask import request, jsonify # Import app, models, and logic functions from pipeline import app, models, logic @app.route('/process', methods=['POST']) def process_item(): print("\n" + "="*50) print("➡ [Request] Received new request to /process") try: data = request.get_json() if not data: return jsonify({"error": "Invalid JSON payload"}), 400 object_name = data.get('objectName') description = data.get('objectDescription') image_url = data.get('objectImage') if not all([object_name, description]): return jsonify({"error": "objectName and objectDescription are required."}), 400 canonical_label = logic.get_canonical_label(object_name) text_embedding = logic.get_text_embedding(description, models) response_data = { "canonicalLabel": canonical_label, "text_embedding": text_embedding, } if image_url: print("--- Image URL provided, processing visual features... ---") image = logic.download_image_from_url(image_url) object_crop = logic.detect_and_crop(image, canonical_label, models) visual_features = logic.extract_features(object_crop) response_data.update(visual_features) else: print("--- No image URL provided, skipping visual feature extraction. ---") print("✅ Successfully processed item.") print("="*50) return jsonify(response_data), 200 except Exception as e: print(f"❌ Error in /process: {e}") traceback.print_exc() return jsonify({"error": str(e)}), 500 @app.route('/compare', methods=['POST']) def compare_items(): print("\n" + "="*50) print("➡ [Request] Received new request to /compare") try: data = request.get_json() if not data: return jsonify({"error": "Invalid JSON payload"}), 400 query_item = data.get('queryItem') search_list = data.get('searchList') if not all([query_item, search_list]): return jsonify({"error": "queryItem and searchList are required."}), 400 query_text_emb = np.array(query_item['text_embedding']) results = [] print(f"--- Comparing 1 query item against {len(search_list)} items ---") for item in search_list: item_id = item.get('_id') print(f"\n [Checking] Item ID: {item_id}") try: text_emb_found = np.array(item['text_embedding']) text_score = logic.cosine_similarity(query_text_emb, text_emb_found) print(f" - Text Score: {text_score:.4f}") has_query_image = 'shape_features' in query_item and query_item['shape_features'] has_item_image = 'shape_features' in item and item['shape_features'] if has_query_image and has_item_image: print(" - Both items have images. Performing visual comparison.") from pipeline import FEATURE_WEIGHTS # Import constant query_shape = np.array(query_item['shape_features']) query_color = np.array(query_item['color_features']).astype("float32") query_texture = np.array(query_item['texture_features']).astype("float32") found_shape = np.array(item['shape_features']) found_color = np.array(item['color_features']).astype("float32") found_texture = np.array(item['texture_features']).astype("float32") shape_dist = cv2.matchShapes(query_shape, found_shape, cv2.CONTOURS_MATCH_I1, 0.0) shape_score = 1.0 / (1.0 + shape_dist) color_score = cv2.compareHist(query_color, found_color, cv2.HISTCMP_CORREL) texture_score = cv2.compareHist(query_texture, found_texture, cv2.HISTCMP_CORREL) raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score + FEATURE_WEIGHTS["color"] * color_score + FEATURE_WEIGHTS["texture"] * texture_score) print(f"Raw Image Score: {raw_image_score:.4f}") image_score = logic.stretch_image_score(raw_image_score) final_score = 0.4 * image_score + 0.6 * text_score print(f" - Image Score: {image_score:.4f} | Final Score: {final_score:.4f}") else: print(" - One or both items missing image. Using text score only.") final_score = text_score from pipeline import FINAL_SCORE_THRESHOLD # Import constant if final_score >= FINAL_SCORE_THRESHOLD: print(f" - ✅ ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})") results.append({ "_id": item_id, "score": round(final_score, 4), "objectName": item.get("objectName"), "objectDescription": item.get("objectDescription"), "objectImage": item.get("objectImage"), }) else: print(f" - ❌ REJECTED (Score < {FINAL_SCORE_THRESHOLD})") except Exception as e: print(f" [Skipping] Item {item_id} due to processing error: {e}") continue results.sort(key=lambda x: x["score"], reverse=True) print(f"\n✅ Search complete. Found {len(results)} potential matches.") print("="*50) return jsonify({"matches": results}), 200 except Exception as e: print(f"❌ Error in /compare: {e}") traceback.print_exc() return jsonify({"error": str(e)}), 500