Update pipeline/__init__.py
Browse files- pipeline/__init__.py +18 -18
pipeline/__init__.py
CHANGED
@@ -1,22 +1,29 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
from flask import Flask
|
4 |
-
from sentence_transformers.cross_encoder import CrossEncoder
|
5 |
|
6 |
FEATURE_WEIGHTS = {"shape": 0.4, "color": 0.5, "texture": 0.1}
|
7 |
FINAL_SCORE_THRESHOLD = 0.5
|
8 |
|
9 |
-
#
|
10 |
app = Flask(__name__)
|
11 |
|
12 |
-
#
|
13 |
-
print("="*50)
|
14 |
print("π Initializing application and loading models...")
|
|
|
15 |
device_name = os.environ.get("device", "cpu")
|
16 |
-
device = torch.device(
|
|
|
|
|
17 |
print(f"π§ Using device: {device}")
|
18 |
|
19 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
20 |
from segment_anything import SamPredictor, sam_model_registry
|
21 |
|
22 |
print("...Loading Grounding DINO model...")
|
@@ -25,6 +32,7 @@ processor_gnd = AutoProcessor.from_pretrained(gnd_model_id)
|
|
25 |
model_gnd = AutoModelForZeroShotObjectDetection.from_pretrained(gnd_model_id).to(device)
|
26 |
|
27 |
print("...Loading Segment Anything (SAM) model...")
|
|
|
28 |
sam_checkpoint = "sam_vit_b_01ec64.pth"
|
29 |
sam_model = sam_model_registry["vit_b"](checkpoint=sam_checkpoint).to(device)
|
30 |
predictor = SamPredictor(sam_model)
|
@@ -34,7 +42,7 @@ bge_model_id = "BAAI/bge-small-en-v1.5"
|
|
34 |
tokenizer_text = AutoTokenizer.from_pretrained(bge_model_id)
|
35 |
model_text = AutoModel.from_pretrained(bge_model_id).to(device)
|
36 |
|
37 |
-
|
38 |
models = {
|
39 |
"processor_gnd": processor_gnd,
|
40 |
"model_gnd": model_gnd,
|
@@ -44,16 +52,8 @@ models = {
|
|
44 |
"device": device
|
45 |
}
|
46 |
|
47 |
-
|
48 |
-
print("...Loading Cross-Encoder model for re-ranking...")
|
49 |
-
|
50 |
-
cross_encoder_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', device=device)
|
51 |
-
|
52 |
-
|
53 |
-
models["cross_encoder"] = cross_encoder_model
|
54 |
-
|
55 |
-
|
56 |
print("β
All models loaded successfully.")
|
57 |
-
print("="*50)
|
58 |
|
59 |
-
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from flask import Flask
|
|
|
4 |
|
5 |
FEATURE_WEIGHTS = {"shape": 0.4, "color": 0.5, "texture": 0.1}
|
6 |
FINAL_SCORE_THRESHOLD = 0.5
|
7 |
|
8 |
+
# Create Flask app
|
9 |
app = Flask(__name__)
|
10 |
|
11 |
+
# Load models
|
12 |
+
print("=" * 50)
|
13 |
print("π Initializing application and loading models...")
|
14 |
+
|
15 |
device_name = os.environ.get("device", "cpu")
|
16 |
+
device = torch.device(
|
17 |
+
'cuda' if 'cuda' in device_name and torch.cuda.is_available() else 'cpu'
|
18 |
+
)
|
19 |
print(f"π§ Using device: {device}")
|
20 |
|
21 |
+
from transformers import (
|
22 |
+
AutoProcessor,
|
23 |
+
AutoModelForZeroShotObjectDetection,
|
24 |
+
AutoTokenizer,
|
25 |
+
AutoModel
|
26 |
+
)
|
27 |
from segment_anything import SamPredictor, sam_model_registry
|
28 |
|
29 |
print("...Loading Grounding DINO model...")
|
|
|
32 |
model_gnd = AutoModelForZeroShotObjectDetection.from_pretrained(gnd_model_id).to(device)
|
33 |
|
34 |
print("...Loading Segment Anything (SAM) model...")
|
35 |
+
# IMPORTANT: The path is now relative to the root of the project
|
36 |
sam_checkpoint = "sam_vit_b_01ec64.pth"
|
37 |
sam_model = sam_model_registry["vit_b"](checkpoint=sam_checkpoint).to(device)
|
38 |
predictor = SamPredictor(sam_model)
|
|
|
42 |
tokenizer_text = AutoTokenizer.from_pretrained(bge_model_id)
|
43 |
model_text = AutoModel.from_pretrained(bge_model_id).to(device)
|
44 |
|
45 |
+
# Store models in a dictionary to pass to logic functions
|
46 |
models = {
|
47 |
"processor_gnd": processor_gnd,
|
48 |
"model_gnd": model_gnd,
|
|
|
52 |
"device": device
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
print("β
All models loaded successfully.")
|
56 |
+
print("=" * 50)
|
57 |
|
58 |
+
# Import routes after app and models are defined to avoid circular imports
|
59 |
+
from pipeline import routes
|