1st
Browse files- pipeline/routes.py +127 -0
pipeline/routes.py
CHANGED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pipeline/routes.py
|
2 |
+
import traceback
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from flask import request, jsonify
|
6 |
+
|
7 |
+
# Import app, models, and logic functions
|
8 |
+
from pipeline import app, models, logic
|
9 |
+
|
10 |
+
@app.route('/process', methods=['POST'])
|
11 |
+
def process_item():
|
12 |
+
print("\n" + "="*50)
|
13 |
+
print("β‘ [Request] Received new request to /process")
|
14 |
+
try:
|
15 |
+
data = request.get_json()
|
16 |
+
if not data: return jsonify({"error": "Invalid JSON payload"}), 400
|
17 |
+
|
18 |
+
object_name = data.get('objectName')
|
19 |
+
description = data.get('objectDescription')
|
20 |
+
image_url = data.get('objectImage')
|
21 |
+
|
22 |
+
if not all([object_name, description]):
|
23 |
+
return jsonify({"error": "objectName and objectDescription are required."}), 400
|
24 |
+
|
25 |
+
canonical_label = logic.get_canonical_label(object_name)
|
26 |
+
text_embedding = logic.get_text_embedding(description, models)
|
27 |
+
|
28 |
+
response_data = {
|
29 |
+
"canonicalLabel": canonical_label,
|
30 |
+
"text_embedding": text_embedding,
|
31 |
+
}
|
32 |
+
|
33 |
+
if image_url:
|
34 |
+
print("--- Image URL provided, processing visual features... ---")
|
35 |
+
image = logic.download_image_from_url(image_url)
|
36 |
+
object_crop = logic.detect_and_crop(image, canonical_label, models)
|
37 |
+
visual_features = logic.extract_features(object_crop)
|
38 |
+
response_data.update(visual_features)
|
39 |
+
else:
|
40 |
+
print("--- No image URL provided, skipping visual feature extraction. ---")
|
41 |
+
|
42 |
+
print("β
Successfully processed item.")
|
43 |
+
print("="*50)
|
44 |
+
return jsonify(response_data), 200
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"β Error in /process: {e}")
|
48 |
+
traceback.print_exc()
|
49 |
+
return jsonify({"error": str(e)}), 500
|
50 |
+
|
51 |
+
@app.route('/compare', methods=['POST'])
|
52 |
+
def compare_items():
|
53 |
+
print("\n" + "="*50)
|
54 |
+
print("β‘ [Request] Received new request to /compare")
|
55 |
+
try:
|
56 |
+
data = request.get_json()
|
57 |
+
if not data: return jsonify({"error": "Invalid JSON payload"}), 400
|
58 |
+
|
59 |
+
query_item = data.get('queryItem')
|
60 |
+
search_list = data.get('searchList')
|
61 |
+
|
62 |
+
if not all([query_item, search_list]):
|
63 |
+
return jsonify({"error": "queryItem and searchList are required."}), 400
|
64 |
+
|
65 |
+
query_text_emb = np.array(query_item['text_embedding'])
|
66 |
+
results = []
|
67 |
+
print(f"--- Comparing 1 query item against {len(search_list)} items ---")
|
68 |
+
|
69 |
+
for item in search_list:
|
70 |
+
item_id = item.get('_id')
|
71 |
+
print(f"\n [Checking] Item ID: {item_id}")
|
72 |
+
try:
|
73 |
+
text_emb_found = np.array(item['text_embedding'])
|
74 |
+
text_score = logic.cosine_similarity(query_text_emb, text_emb_found)
|
75 |
+
print(f" - Text Score: {text_score:.4f}")
|
76 |
+
|
77 |
+
has_query_image = 'shape_features' in query_item and query_item['shape_features']
|
78 |
+
has_item_image = 'shape_features' in item and item['shape_features']
|
79 |
+
|
80 |
+
if has_query_image and has_item_image:
|
81 |
+
print(" - Both items have images. Performing visual comparison.")
|
82 |
+
from pipeline import FEATURE_WEIGHTS # Import constant
|
83 |
+
query_shape = np.array(query_item['shape_features'])
|
84 |
+
query_color = np.array(query_item['color_features']).astype("float32")
|
85 |
+
query_texture = np.array(query_item['texture_features']).astype("float32")
|
86 |
+
found_shape = np.array(item['shape_features'])
|
87 |
+
found_color = np.array(item['color_features']).astype("float32")
|
88 |
+
found_texture = np.array(item['texture_features']).astype("float32")
|
89 |
+
shape_dist = cv2.matchShapes(query_shape, found_shape, cv2.CONTOURS_MATCH_I1, 0.0)
|
90 |
+
shape_score = 1.0 / (1.0 + shape_dist)
|
91 |
+
color_score = cv2.compareHist(query_color, found_color, cv2.HISTCMP_CORREL)
|
92 |
+
texture_score = cv2.compareHist(query_texture, found_texture, cv2.HISTCMP_CORREL)
|
93 |
+
raw_image_score = (FEATURE_WEIGHTS["shape"] * shape_score +
|
94 |
+
FEATURE_WEIGHTS["color"] * color_score +
|
95 |
+
FEATURE_WEIGHTS["texture"] * texture_score)
|
96 |
+
image_score = logic.stretch_image_score(raw_image_score)
|
97 |
+
final_score = 0.4 * image_score + 0.6 * text_score
|
98 |
+
print(f" - Image Score: {image_score:.4f} | Final Score: {final_score:.4f}")
|
99 |
+
else:
|
100 |
+
print(" - One or both items missing image. Using text score only.")
|
101 |
+
final_score = text_score
|
102 |
+
|
103 |
+
from pipeline import FINAL_SCORE_THRESHOLD # Import constant
|
104 |
+
if final_score >= FINAL_SCORE_THRESHOLD:
|
105 |
+
print(f" - β
ACCEPTED (Score >= {FINAL_SCORE_THRESHOLD})")
|
106 |
+
results.append({
|
107 |
+
"_id": item_id,
|
108 |
+
"score": round(final_score, 4),
|
109 |
+
"objectName": item.get("objectName"),
|
110 |
+
"objectDescription": item.get("objectDescription"),
|
111 |
+
"objectImage": item.get("objectImage"),
|
112 |
+
})
|
113 |
+
else:
|
114 |
+
print(f" - β REJECTED (Score < {FINAL_SCORE_THRESHOLD})")
|
115 |
+
except Exception as e:
|
116 |
+
print(f" [Skipping] Item {item_id} due to processing error: {e}")
|
117 |
+
continue
|
118 |
+
|
119 |
+
results.sort(key=lambda x: x["score"], reverse=True)
|
120 |
+
print(f"\nβ
Search complete. Found {len(results)} potential matches.")
|
121 |
+
print("="*50)
|
122 |
+
return jsonify({"matches": results}), 200
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
print(f"β Error in /compare: {e}")
|
126 |
+
traceback.print_exc()
|
127 |
+
return jsonify({"error": str(e)}), 500
|